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Abstract 

 
The study investigated the probabilistic misconceptions of South African students. A questionnaire was administered to a group 
of 74 students from grades 10, 11 and 12 selected randomly from 5 schools around Polokwane and analysed using SPSS 
version 22. Five groups of misconceptions were identified. The Structure of the Observed Learning Outcome (SOLO) taxonomy 
was used in this study to describe students’ hierarchical understanding levels on the concept of probability. It was found that, 
generally there was no significant improvement in developmental level from grades 10 to 12. Overally, the mean of correct 
responses on the test problems was 2, 1411. The modal cognitive level on the individual test items was 2 which indicate that 
participants had some evidence of the use of probability principles and appropriate quantitative information is evident, but they 
may be incomplete or are incorrectly used. All participants had the basic understanding of the concept of probability and could 
carry out simple probability calculations. Participants of all levels showed evidence of the equiprobability bias (miscounting of 
outcomes in questions concerning theoretical probability), exhibited ignorance of the effect of sample size and were seldom 
successful on counter intuitive conditional probability problems. Gender differences were observed. The overall correct 
response rate of males (56.3%) was significantly greater than that of females (51.6%). Males and females also tended to 
answer differently, based on the type of question; many of these differences were statistically significant. 
 

Keywords: Probability, cognitive obstacles, misconceptions, mathematics. 
 

 
1. Introduction and Background of the study 
 
The difficulties experienced by pupils with probabilistic concepts have been confirmed by a number of recent studies. 
Probability is young area of mathematics in the South African secondary school curriculum. There is a growing trend in 
South Africa and world over to include probability in the school curriculum. Probability is part of the new Curriculum 
Assessment Policy Statements (CAPS) curriculum in South Africa (Department of Education, 2012). In the past it was 
regarded as an enrichment topic targeted for more “able” pupils who often encounter related questions in mathematics 
competitions. Some elements of probability were included in Curriculum 2005, but the emphasis was on the knowledge of 
ways of counting and understanding of probability of concepts. Literature advocates for the need to include probability but 
not much is known about how pupils struggle to grasp the topic and about the most effective pedagogical approaches. 

Probability is the study of random events. It is used in analysing games of chance, genetics, weather prediction, 
and a myriad of other everyday events. A number of researchers Gal (2005) and Jones (2005) highlight the reasons for 
including probability in the secondary school mathematics curriculum. These reasons are related to the usefulness of 
probability for daily life, its instrumental role in other disciplines, the need for a basic stochastic knowledge in many 
professions, and the important role of probability reasoning in decision making. Students will meet randomness not only 
in the mathematics classroom, but also in biological, economic, meteorological, political and social activities (games and 
sports) settings. The understanding of probabilistic concepts does not appear to be easy, given the diversity of 
representations associated with this concept. Probability is difficult to understand for various reasons, including disparity 
between intuition and conceptual development (Chadjipadelis & Gastaris, 1995). According to Batanero, Biehler, Carmen, 
Maxara, Engel and Vogel (2005) probability is increasingly taking part in the school mathematics curriculum; yet most 
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teachers have little experience with probability and share with their students a variety of probabilistic misconceptions. 
Today’s information-rich society need to have an understanding of probability. People are faced more and more 

often with making decisions in an environment that involves uncertainty. Such an environment requires the understanding 
of probability as an important topic which has real-life applications. Despite the importance of probability, many children 
and adults hold misconceptions about probability (Jones & Tarr, 2007). Instruction in probability should provide 
experiences in which students are allowed to confront their misconceptions and develop understandings based on 
mathematical reasoning (Shaughnessy, 2003). However, teachers tend to omit topics from probability due to their own 
lack of experience or misconceptions (Jones & Tarr, 2007). The existence of student-held perceptions about probability 
may explain, in part, why learning probability is problematic. The problems associated with the learning of probability are 
not well-documented (Pratt, 2011; Gage, 2012).The spectrum of students’ problems span from difficulty with proportional 
reasoning and interpreting verbal statements of problems, conflicts between the analysis of probability in the mathematics 
lesson and experience in real life, and premature exposure to highly abstract, formalised presentations in mathematics 
lessons(Sadaghiani,  2006). 

Probability is a complex concept which has multiple dimensions. Probability can be interpreted descriptively using 
words such as never, impossible, unlikely, probably, certain, and so on, but how they are used in probability may be 
different from their everyday usage. There are three approaches to the concept of probability: theoretical, empirical and 
subjective. The literature concerning misconceptions about probability identified many misconceptions, such as 
representativeness, availability, outcome approach, equiprobability. Research has shown that most students do not 
understand the concepts that are involved in probability. Kaplan (2008) noted that students’ failure to intuition about ideas 
of probability stems from their inability to handle rational number concepts and proportional reasoning which are used in 
calculations, reporting and interpreting probability concepts. Students’ weaknesses in handling basic concepts involving 
fractions, decimals and percentages were also identified as a potential threat to understanding probability concepts (Tso, 
2012). A research conducted by Hansen, McCann and Myers (1985) revealed that students’ difficulties in translating 
verbal problem statements into algebraic sentences present difficulties as these do not rest on school mathematics. 

Borovcnik (2012) noted that the abstract and formal nature of probability often cause students to develop a 
negative attitude towards probability concepts. Students’ level of mental maturity and level of specific mathematics skills 
often hinder their understanding of probability concepts. A number of studies carried on the cognitive development of 
secondary school students indicate that most of them cannot operate on the formal operational level (Green, 1983; 
Stonewater & Stonewater, 1984). Green (1983) further noted that students’ inadequate verbal ability often limits them 
from accurately describing probabilistic situations. Students need to develop skills in dealing with abstract concepts 
before being exposed to probabilistic reasoning. 

Secondary school mathematics students often fall victim to misconceptions due to the conflict between their 
expectations based on mathematics and their intuitions rooted in experience. Cognitive biases are tendencies to think in 
certain ways. Cognitive biases can lead to systematic deviations from a standard way of doing things. Students develop 
concepts of probability without formally studying the discipline and some of their concepts are at variance with those 
taught in the classroom (Madsen, 1991).Good teaching entails replacing these informal conceptions with more normative 
ones. Probability naturally lends itself to plenty of fun, hands-on cooperative learning and group activities. Activities with 
spinners, dice, and coin tossing can be used to investigate chance events. 

Teachers’ lack of knowledge about probability was identified as a predictor of students’ limited understanding of 
probability (Papaieronymou, 2009). Shaughnessy (2003) noted that the effectiveness of the probability instruction 
depends on those who teach it. However, most South African mathematics teachers have little experience about the topic 
(Mutodi & Ngirande, 2014). Much of the recent literature revealed that in South Africa many mathematics teachers lack a 
sound grounding in probability (Wessels & Nieuwoudt, 2011). This lack of grounding limits their confidence and 
competence in teaching data handling and probability. 

The aim of this paper is to shed light on the nature of misconceptions, difficulties and obstacles exhibited by high 
school mathematics students. The identification of the difficulties displayed by students is desirable in order to organize 
in-service training programmes and workshops on preparing didactical situations which allow the students to overcome 
their cognitive obstacles. The analysis of students’ cognitive obstacles should provide the teacher with a deeper 
understanding of pupils' reasoning. In order to provide effective instruction, mathematics teacher educators need to know 
the nature of such obstacles and prescribe effective intervention strategies 
 
2. Problem Statement 
 
Students in South African secondary schools have very limited knowledge and skills about probability (Bennie, 2005). 
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This is due to a number of factors including influences from both inside and outside the schools. The role of probability in 
decision making is still underestimated. Compared to other mathematical topics, probability was recently introduced in the 
syllabus to become an integral part of the mathematics curriculum. Given this background about students’ probabilistic 
thinking, it is not surprising that students’ knowledge about the topic is still very limited. Furthermore, previous studies 
came up with inconclusive results. Some indicated that there are very limited teaching resources, such as textbooks, 
activities and materials (dice, marbles…) provided by schools (Jun, 2000) and other results indicated teachers’ lack of 
knowledge and little experience about probability was identified as a predictor of students’ limited understanding of 
probability (Bernstein, McCarthy & Oliphant, 2013; and Papaieronymou, 2009). Students’ limited experience with 
probability language compounds the problem as they often have difficulty in adequately explaining their thinking. 
Therefore it is necessary to sight see the nature of misconceptions and obstacles faced by secondary school students in 
solving probability problems. 
 
3. Objectives of the study 
 
The objectives of this study were: 

i. to explore the nature of misconceptions and obstacles faced by secondary school students in an attempt to 
solve probability problems;  

ii. to determine the students’ cognitive level in relation to probability according to levels suggested by Watson 
and Collis (1993);  

iii. to investigate the effect of some demographic variables on students’ understanding of probability and,  
iv. Give recommendations to the educators and policy makers on the best practices that can decrease student’s 

difficulties in probability.  
 
4. Research Questions 
 

1. What kinds of misconceptions do secondary school mathematics students have regarding probability?  
2. What is the nature of students’ obstacles about probability and can some of them be identified as a 

springboard for the development of a desirable mathematical understanding? 
 
5. Hypotheses 
 
This study postulated that: 

H1: There is a significant difference between probability misconceptions and students’ demographic variables (i.e. 
gender, grade level and home language). 
 
6. Literature Review 
 
6.1 Nature of students’ misconceptions and obstacles 
 
As Centeno (1988) points out, 'a difficulty is something that inhibits the student in accomplishing correctly or in 
understanding quickly a given item (p. 142). Difficulties may be due to several causes: related to the concept that is being 
learned, to the teaching method used by the teacher, to the student's previous knowledge, or to his ability'. A widely 
shared principle in educational psychology is stated by Ausubel, Novak and Hanesian (1983) that the most important 
factor that influences learning is the student's previous knowledge. Batanero, Godino, Vallecillos, Green and Holmes 
(2001) describe an obstacle as knowledge, not a lack of knowledge. S/he argued that students employ this knowledge to 
produce the correct answer in a given context, which they frequently meet. However when this knowledge is used outside 
this context, it generates mistakes. A contradiction between the students’ thinking and the new idea is produced and 
inhibits the creation of knowledge. It is essential to identify the obstacle and to replace it in the new learning. However it 
can also be pointed out that even after the student has overcome the obstacle, it recurs from time to time due to lack of 
practice. Other difficulties experienced by students are due to a lack of the basic knowledge needed for a correct 
understanding of a given concept or procedure (Batanero, Godino, Vallecillos, Green & Holmes, 2001). 

Fallacies in reasoning can occur because of violations in the application of laws of probability. Examples of such 
errors include stereotyping, confirmation bias, and matching bias. Many of these errors occur because of misconceptions 
about probability. Students often do not understand the laws of probability and form misconceptions through informal 
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experiences outside the classroom (Hirsch &O'Donnell, 2001). Students may develop their own way of reasoning about 
uncertain events. Their lack of understanding may be due to a lack of experience with the mathematical laws of 
probability or because they use heuristics (Hirsch &O'Donnell, 2001; Kahneman, Slovic & Tversky, 1982). Although 
formal training and teaching are associated with improved reasoning (Hirsch & O'Donnell, 2001), many students who 
receive formal instruction continue to have misconceptions about the nature of probability and probabilistic reasoning. 
Misconceptions of probability are particularly resistant to elimination during typical classroom instruction as they appear to 
be of a psychological nature and are strongly held (Konold, 1991).  

Shaughnessy (2003) claim that pupils do not approach the topic as blank slates, but have firmly established beliefs 
about chance long before they are taught any probability. Bennie & Newstead (2008) indicates, however, that these 
beliefs cannot be “checked in at the classroom door”, that is, they conflict with ‘school probability’. Therefore teachers 
must be aware of the intuitions that pupils might bring to the study of probability and replace these with “correct intuitions” 
in line with the “formal” approach to probability. However from a radical constructivist position, Konold (1991) stressed the 
need to reconcile the conflicts between the classroom and the outside world. There is still a lot of debate about different 
views of probability and different methodologies of teaching the topic. 
 
7. Research Design and Methodology 
 
7.1 Approach 
 
This study is explorative and descriptive and uses a quantitative design to explore students’ misconceptions, obstacles 
and difficulties related to probability. An explorative design is one in which the major emphasis is on gaining ideas and 
insights (Mutodi & Ngirande, 2014). Exploratory research is conducted to provide a better understanding of a situation 
and not designed to come up with final answers or decisions but to produce hypotheses and explanations about what is 
going on in a situation. A descriptive research design is one in which the major emphasis is on determining the frequency 
with which something occurs or the extent to which two variables covary. It provides a picture of the specific details of a 
situation, a social setting, a relationship (Neuman, 2011) or a picture of a phenomenon as it naturally occurs (Bickman & 
Rog, 2009).  
 
7.2 Participants  
 
Participants were both male and female grade 10, 11 and 12 students (n = 74) randomly selected from 5 secondary 
schools around Polokwane Province in South Africa. Efforts were made to include students from a wide range 
background to ensure the inclusion of students with varied level of exposure and experience with probability and in the 
degree to which they held misconceptions.  
 
7.3 The Research Instrument 
 
A set of 25 questions were selected and administered to the sampled respondents in order to examine the nature 
misconceptions. This set of questions formed the major research instrument of the study. Previous researches on 
misconceptions in probability utilised multiple choice formats (Brown, Carpenter, Kouba, Lindquist, Silver, & Swafford, 
1988; Fischbein, Nello, & Marino, 1991). However Shaughnessy (1992) argued that information from multiple choice 
items is often sketchy, incomplete and may not be ideal for clarifying students' thinking. Thus in the present research, all 
questions required open responses. The questions were administered to a sample of 74 students enrolled in grades 10, 
11 and 12 mathematics CAPS Curriculum. The analysis of the responses in the present study identified four levels 
according to level of sophistication in a similar manner to that of Watson and Collis (1994). 

Level 1. In interpreting probability situations no analysis or evidence of use of probability principles is 
demonstrated. Features may include: the use of irrelevant information, subjective judgements, disregarding quantitative 
information, guessing at random, belief in control of probability and absence of any reason. Responses that use recent 
experiences to predict or estimate probabilities, availability, are included in this level. 

Level 2. Some evidence of the use of probability principles and appropriate quantitative information is evident, but 
they may be incomplete or are incorrectly used. Probabilistic reasoning based on the assumption of equal likelihood when 
none exists and the use of the representativeness heuristic is considered to be illustrative of this level. 

Level 3. Probability principles are applied correctly used and an awareness of the role of quantification is evident. 
However, such quantification is precise or numerical. 
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Level 4. Probability principles are used correctly and relationships are explained quantitatively. 
 
7.4 Reliability and Validity 
 
Reliability refers to the degree of consistency of the data gathering instrument in measuring that which it is supposed to 
measure (Kimberlin & Winterstein, 2008). This degree of consistency is measured using Cronbach’s alpha coefficient. 
Validity on the other hand, is a measure of internal consistency that shows the degree to which all the items in a test 
measure the same attribute (Masitsa, 2011). It is mandatory that assessors and researchers should estimate this quantity 
to add validity and accuracy to the interpretation of their data (Tavakol & Dennick, 2011). It ensures that each test item 
measures the same latent trait on the same scale. In this study, the Cronbach alpha was calculated for the 25-item 
questionnaire and found to be 0.677 which is viable since an acceptable value must lie between 0.70 and 0.90 (Hof, 
2012). 

To observe content validity, the questionnaire was constructed and structured so that the questions posed were 
clearly articulated and directed. All statements were formulated to eliminate the possibility of misinterpretations. This was 
followed by a pre-tested administered to 50 students who were excluded from the participants in the main study. The 
identified amendments were made to ensure the simplicity and clarity of some questions, making it fully understandable 
to the participants (Masitsa, 2011). 
 
Table 1: Cronbach’s alpha reliability coefficient 

Cronbach’s Coefficient Alpha
Variable(s) Number of items Alpha 
Probability Terms & Definitions 5 0.741 
Theoretical Probability 5 0.827 
Background(Venn Diagrams & Proportion) 5 0.763 
Union And Intersection 5 0.605 
Dependent & Independent Events 5 0.509 
Overall questionnaire 25 0.777 

 
8. Data Analysis 
 
The test responses were marked according to the rubric and students’ responses were recorded and coded according to 
Watson & Collis (1994)’s level of acceptability. A statistical computer package, SPSS version 22, was used to process the 
data. The techniques used during data analysis included descriptive statistics, t-tests and Analysis of Variance (ANOVA). 
 
9. Results and Discussion 
 
9.1 Descriptive statistics 
 
Table 2: Demographic variables 

Variable Frequency Percentages (%) 

Gender Male 30 59.5
Female 44 40.5

 
Grade 

10 24 32.4
11 23 31.1
12 27 36.5

 
Home language 

Sepedi 50 67.6
Shangane 14 18.9

Venda 6 8.1
Swati 4 5.4

 
Demographic data about the respondents shows that 30 (59.5%) were males and 44(40.5%) were females. The majority 
27(36.5%) of the participants were grade 12 students. Sepedi dominated the home languages 50(67.6) while Shangane 
14(18.9%) was also notable. The other languages were insignificantly represented.  

The distribution of students’ performance per question according to cognitive levels in table 3 below indicates that 
from the first category (Probability Terms & Definitions) most students were operating at level 1.Questions 2 and 5 were 
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badly treated as only 5 and 7 students respectively operated at level 4. It can be noted that students struggled to identify 
the sample space after rolling a die as well finding the complement of a given probability. Students made a similar 
response in question 7 which also involves rolling a die. This incorrect response can be linked to lack of knowledge about 
the experiment together with its outcomes. A closer look at the distribution of respondents’ cognitive levels frequencies in 
item 12 also revealed that ‘sample space’ poses a lot of difficulties.  

Insufficient background on sets and set notation was also evident as respondents incorrectly interpreted the 
number of elements in a set [n(s)].Questions related to unions and intersections indicate that most participants operated 
at low cognitive levels as evidenced by high frequencies concentrated at the lower levels. Such a pattern can be 
observed from Questions 16 to 20. A similar trend was also evident for dependent and independent events. The overall 
mean and modal cognitive level were around 2 suggesting that some evidence of probability principles and appropriate 
quantitative information is evident, but they may be incomplete or are incorrectly used.  
 

Table 3: Descriptive Statistics of respondents’ levels of understanding Probability 

Item Description 
Respondents’ 

cognitive levels Mean Mode Standard 
Deviation Skewnes 

1 2 3 4
PROBABILITY TERMS & DEFINITIONS

Q1 Define the following terms: probability of an event, An experiment, An 
outcome, and sample space, An event 13 30 23 8 2.351 2.0 .8980 .170 

Q2 Write down the sample space for rolling a single die numbered 1 to 6? 17 32 20 5 2.176 2.0 .8658 .299 

Q3 Suppose that the probability of snow is 0.67, What is the probability that it 
will NOT snow? 21 22 21 10 2.270 2.0 1.0243 .215 

Q4 What is the sample space for choosing a letter from the word probability? 25 26 16 7 2.068 2.0 .9698 .510 
Q5 For any event A, P (A) + P (A’) = _______, that is P (A’) = ______- P (A). 36 21 10 7 1.838 1.0 .9935 .939 

THEORETICAL PROBABILITY

Q6 A bag contains 6 red, 3 blue, 2 green and 1 white balls. A ball is picked at 
random. Determine the probability that it is blue. 27 22 10 15 2.176 1.0 1.1391 .502 

Q7 What is the probability of getting an even number when rolling a single 6-
sided die? 25 34 13 2 1.892 2.0 0.7863 .542 

Q8 What is the probability of landing on an odd number after spinning a 
spinner with 9 equal sectors numbered 1 through 9? 16 36 18 4 2.135 2.0 0.8163 .365 

Q9 What is the probability of getting a 0 after rolling a single die numbered 1 
to 6? 11 26 24 13 2.527 2.0 .9541 .018 

Q10 A bag has 20 raffle tickets in it, numbered from 1 to 20. What is the 
probability of picking out an even number? 8 21 21 24 2.824 4.0 1.0117 -0.289 

BACKGROUND(VENN DIAGRAMS & PROPORTION

Q11 
Let S denote the set of whole numbers from 1 to 16, X denote the set of 
even numbers from 1 to 16 and Y denote the set of prime numbers from 1 
to 16. Draw a Venn diagram depicting S, X and Y. 

13 23 18 20 2.608 2.0 1.0704 -0.048 

Q12a 
Pieces of paper labelled with the numbers 1 to 12 are placed in a box and 
the box is shaken. One piece of paper is taken out and then replaced. (a) 
What is the sample space, S? Find n(s). 

33 25 9 7 1.865 1.0 .9697 .927 

Q12b Write down the set A, representing the event of taking a piece of paper 
labelled with a factor of 12? Find n (A). 30 18 10 16 2.162 1.0 1.1824 .494 

Q12c Write down the set B, representing the event of taking a piece of paper 
labelled with a prime number. Find n (B). 19 22 14 19 2.446 2.0 1.1365 .137 

Q12d Represent A, B and S by means of a Venn diagram. 33 29 6 6 1.797 1.0 .9063 1.098 
UNION AND INTERSECTION

Q16 Let E and F be events such that Pr(E)=.6, Pr(F’)=.3, and Pr (EUF)=.8. 
Find Pr (E F)  22 45 5 2 1.865 2.0 .7643 1.181 

Q17 
A jar has purple, blue and black sweets in it. The probability that a sweet 
chosen at random will be purple is 0.2 and the probability that it will be 
black is 0.6 If I choose a sweet at random, what is the probability that it 
will be purple or blue. 

28 36 10 0 1.757 2.0 .6787 .342 

Q18 If dice are the same colour, what is the probability of getting 2 or 3 on at 
least one of the dice? 27 31 15 1 1.878 2.0 .8268 .830 

Q19 Suppose our experiment is flipping a coin three times in a row. Let B be 
the event that we do not get three heads in a row. Find P (B). 35 23 12 4 1.797 1.0 .9063 .872 



ISSN 2039-2117 (online) 
ISSN 2039-9340 (print) 

        Mediterranean Journal of Social Sciences 
            MCSER Publishing, Rome-Italy 

Vol 5 No 8 
May  2014 

          

 452 

Q20 Two fair dice are rolled. What is the probability that the sum of the values 
is a prime number? 30 22 19 3 2.297 1.0 1.1315 .143 

DEPENDENT & INDEPENDENT EVENTS

Q21 
A school decided that its uniform needed upgrading. The colours on offer 
were beige or blue or beige and blue. 40% of the school wanted beige, 
55% wanted blue and 15%said a combination would be fine. Are the two 
events independent? 

19 21 19 15 2.405 2.0 1.0844 .118 

Q22 
A jar contains 4 white marbles, 5 red marbles, and 6 black marbles. If a 
marble were selected at random, what is the probability that it is white? or 
black? 

24 30 13 7 2.041 2.0 .9427 .624 

Q23 If D and F are mutually exclusive events, with P(D) = 0,3 and P(D or F) = 
0,94,find P(F). 29 19 11 15 2.162 1.0 1.1590 .488 

Q24 Given Pr (E) = 0.5, Pr (F) =0.3, and Pr (E F) = 0.1. Determine if E and F 
are independent events? 18 24 15 17 2.419 2.0 1.0980 .180 

Q25 
A cloth bag has four coins, one R1 coin, three R2 coins and two R5 coin. 
What is the probability of first selecting a R1 coin and then selecting a R2 
coin? 

35 27 6 6 1.770 1.0 .9148 1.140 

 
The respondents’ cognitive level frequencies for each item were analysed and are shown in table 3 above. The results 
showed that the overall mean (M) cognitive level was (M) =2,1411, with a standard deviation (SD) of 0.3308 which 
according to the rubric indicates that some evidence of use of probability principles and appropriate quantitative 
information is evident, but they may be incomplete or are incorrectly used. The modal (Mo) cognitive level for each item 
was 2.0, acknowledging that most respondents agree that they experience some form of probability either in class or 
during individual study. These findings support a comment made by Spiegelhalter (2014) who echoed that probability is 
difficult to students because it is unintuitive and difficult. The first step in developing an understanding of probability is to 
acquire intuitions on how it works and relates to our natural sense of uncertainty. Results also indicate that students’ lack 
of intuition on whether or not past experiences have an effect on the likelihood of future events. 
 
Figure1: Descriptive Statistics of respondents’ levels of understanding Probability 

 
 
The results displayed in figure 1 above indicates most learners operate around level 2 which according to the rubric 
indicates some evidence of use of probability principles and appropriate quantitative information is present, but they may 
be incomplete or are incorrectly used. Probabilistic reasoning based on the assumption of equal likelihood when none 
exists and the use of the representativeness heuristic is considered to be illustrative of this level. Some attributes of level 
1 were noted especially the use of irrelevant information, subjective judgements, disregarding quantitative information, 
guessing at random, belief in control of probability and absence of any reason. Most students operated at level 1 on 
aspects related to combining probabilities using intersections and unions. 
9.2 Inferential Statistics 
 
In order to test the contribution of the independent variables (gender, grade level and home language) against the 
dependent variable (cognitive level), two statistical models were used. These include the t-test for the difference between 
means and Analysis of Variance (ANOVA) for the analysis of the differences between group means.  
 
9.2.1 Tests of Hypotheses 
 

A t-test was conducted to compare if there is a significant difference between probability misconceptions and students’ 
demographic variables (i.e. gender, grade level and home language). Results are shown in table 4 below. Results 
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indicate that the mean score for male students’ probability cognitive level was Mm= 2.2520 with (Nm =30, SDm = 0.20934), 
which was slightly higher than the mean score of Mf=2.0655 with (Nf =44, SDf = 0.37663) obtained from female students. 
It is apparent from table 4 that males fared better than their female counterparts.  
 
Table 4: Gender &Probability Cognitive Level mean Differences 

Probability Cognitive Levels
Gender Mean N Standard Deviation
Males 2.2520 30 0.20934

Females 2.0655 44 0.37663
Total 2.1411 74 0.33086

  
The following postulated hypotheses were envisaged to test if gender has a significant effect on probability cognitive 
levels: 

H0: There is no difference in probability cognitive levels between males and females. 
H1: There is a significant difference in probability cognitive levels between males and females. 
A t-test was conducted to test whether there was a significant difference in probability cognitive levels between 

male and female students. The results for the test are shown in table 5 below (df=73, t = 24.457, p=0.00). Therefore, the 
null hypothesis was rejected since the p-value is less than 0.05. Hence we conclude that there is a significant difference 
in probability cognitive levels between males and females. 
 
Table 5: t-Tests 

 

Test Value = 0

t df Sig. (2-tailed) Mean Difference
95% Confidence Interval 

of the Difference 
95% Confidence Interval 

of the Difference 
Lower Upper 

Gender 24.457 73 .000 1.4054 1.291 1.520 
 
To test if there are significant differences among students from different language backgrounds, an Analysis of Variance 
test was conducted to test the following hypothesis. 

H0 : There is no difference in probability cognitive levels among students from different language backgrounds. 
H1 : There is a significant difference in probability cognitive levels among students from different language 

backgrounds 
 
Table 6: Anova-Home Language  

 Sum of Squares df Mean Square F Sig. 
Between Groups 65.678 29 2.265 .725 .818 
Within Groups 137.457 44 3.124  
Total 203.135 73  

 
The results of the test in table 6 above show that (df = 29, df =44, F= .725, p=0.818).Therefore, we do not reject the null 
hypothesis since p>0.05 and conclude that there are no significant differences in cognitive levels among students from 
different language backgrounds. Results from the analysis indicated that demographic factors such as gender can predict 
probability cognitive levels of the students; however differences in grade and language backgrounds do not have 
significant effects on math anxiety levels. These observations seem to be consistent with findings from Kazima (2008) 
who observed that demographic factors gender were good predictors of students’ probability cognitive levels. 
 
Table 7: ANOVA-Grade 

Sum of Squares df Mean Square F Sig. 
Between Groups 22.962 29 .792 1.248 .249 
Within Groups 27.917 44 .634  
Total 50.878 73  

 
The results of the test in table 8 above show that (df = 29, df =44, F= .2.49, p=0.386).Therefore, we do not reject the null 
hypothesis since p>0.05 and conclude that there are no significant differences in cognitive levels among students from 
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different grade cohorts. Results from the analysis indicated that demographic factors such as gender can predict 
probability cognitive levels of the students; however differences in grade and language backgrounds do not have 
significant effects on math anxiety levels. These observations seem to be consistent with findings from Kazima (2008) 
who observed that demographic factors gender were good predictors of students’ probability cognitive levels. 
 
10. Discussion of Results 
 
It can be recalled that the purpose of this study was to explore the nature of misconceptions and cognitive obstacles 
faced by secondary school students in understanding probability and to examine the effect of demographic factors, which 
are gender, grade and home language. It was also hypothesized highly that there is a significant difference between 
probability misconceptions and students’ demographic variables (i.e. grade level, gender and home language).  

This study found that there was a significant difference in probability cognitive levels of students according to 
gender. Both descriptive statistics and inferential indicated that males had less misconceptions compared to their female 
counterparts. Findings in the present study are consistent with the findings of Hodnik adež and Maja (2011) who 
reported that differences in gender influenced probability tasks solving only to some extent. However, these findings 
contradict the findings of Jun (2000) which concluded that gender differences were insignificant. Long research history in 
this area has shown that male advantage in mathematics achievement is a universal phenomenon (Mullis, Martin, 
Beaton, Gonzalez, Gregory, Garden, & Murphy, 2000). In support to this, Mutodi and Ngirande (2014) also recognized 
that math interests of males are better than the females from secondary school onwards. 

This study found that there was no significant difference in probability cognitive levels of students according to 
grade. Descriptive statistics indicated that students across the three grade levels experience the same difficulties. Further 
inferential statistics proved it significant. This is contrary to expectations, as grade 12 students were expected to perform 
better than lower grades students. A possible explanation to this might be that, teachers from the selected schools have 
difficulties in teaching the topic.  

The study found that there were no significant differences in cognitive levels among students from different 
language backgrounds. The expectation was that since South Africa is a multi-cultural and multi-lingual country, students 
from different language backgrounds tent to experience difficulties differently. An important issue emerging from these 
findings is that other factors other than the identified ones have a direct influence on the development of students’ 
misconceptions about probability. 
 
11. Conclusions, Recommendations and Implications for Teaching 
 

The findings of this study have significant implications for all stakeholders, including teachers, schools and curriculum 
planners. The fact that probability is also utilized in the areas close to everyday life of humans such meteorology, 
elections, actuarial science, etc, probability concepts and techniques need to be integrated in mathematics lessons as 
early as at the primary level, and not only in higher grades or even in high school, when the mindset of a student is 
already developed. This research confirms recommendations by Threlfall (2004) that relating everyday statements to 
probability language, answering probability or likelihood questions about a described situation, collecting and reflecting on 
empirical data may help to clear students’ misconceptions about probability.  

Most surveys emphasized students’ lack of skills and background knowledge of mathematics as major contributors 
to the development of misconceptions. This study acknowledges that the concepts are difficult and require a high degree 
of sophistication which many students lack. Students lack sufficient background knowledge of topics such as ratio and 
proportion, which in turn present stumbling blocks in their understanding of probability. Helping students to develop the 
skill of self-regulation has been cited by Shaughnessy (1992) as a key to success in probability. 

The instructional implication of this study is that teachers must determine where students’ difficulties lie before they 
can intervene. If the concept is abstract and intrinsically difficult, the students will need more experience with it. If the 
students lack requisite mathematical skills, remedial work will be necessary first. The multiplicity of possible underlying 
reasons for students' difficulties greatly complicates the teacher's task. Yet proceeding without diagnosis almost surely 
will be fruitless. What is needed first is that teachers themselves be well informed. They should correctly understand the 
concepts and be aware of the different sources of difficulty that students may have. 
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