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Abstract 

 
The main objective of this paper is to present in a deductive way, solutions for general games played 
under normal conditions following competitive paths, applying core principles of Nash equilibrium. Here 
the normal approach implies strategic choices available for each player, formulated and implemented 
without any information concerning specific choices to be made by others players.  It is convenient to 
keep in mind that John von Neumann and Oskar Morgenstern outlined a set of conditions for Nash 
equilibrium for a game in normal form, proposed as the basic framework to analyze the conditions and 
requirements for a particular Nash equilibrium to be the solution of the game. Theorems that exhibit 
imbedding relations among the Nash equilibriums of the game are given to examine the role of pre-play 
communication and the imbedding order in equilibrium selection. A core argument to claim here is that a 
generic case of Nash equilibriums that are strategically unstable relative to maxi-min strategies is given 
to emphasize the role of moves of the third kind and pre-play communication in correlated and 
coordinated solutions and the need to account for cases where Nash equilibriums are not plausible or 
even desirable as solutions for a game in normal form. 
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 Introduction 1.

 
There are many convincing reasons that suggest that the solution to the non-cooperative has to be 
a Nash equilibrium. The self-enforcing characteristic of pure strategy Nash equilibriums is one of 
the major ones. However, many game theorists have observed that such enforcing characteristic is 
not always present when considering equilibria determined by mixed strategies.  

Furthermore, in this paper we will exhibit games with  multiple but conflicting Nash equilibria in 
pure strategies,  leaving in some cases no other possibility than to chose a mixed strategy 
equilibrium as the solution of given game.  But then, the possible mixed strategy Nash equilibrium 
left to be selected is shown to be unstable relative to maximin strategies.   

In such cases we are faced with a situation where Nash Equilibrium is neither plausible nor 
desirable as a solution to the game and it is apparently outperformed by maximin strategies that 
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appear as the only plausible and desirable solution. Thus, for games in normal form where the 
choice of strategy by each player is to be made without any information concerning the choice to be 
made by the other players, it appears to be necessary if not convenient to be able to display the 
interrelations among the different Nash equilibriums of the game. 

In that case, it is important to contemplate conditions under which these may be reflected as 
solutions, as well. We will proceed first by looking at (1) the  von Neumann stable set of outcomes  
which gives the Pareto-optimal set of outcomes of the game  and we will introduce the concept of  
solutions that are “socially stable” in terms of maximum measures of global preference versus those 
that are strategically or individually stable.  

This confrontation is representative of standards of behavior in conflict, namely the standard 
of individual optimization versus social optimization, where the assumption of one may eliminate the 
indeterminacy of the other one. Then we will concentrate on (2) the von Neumann stable set of 
Nash equilibriums (vN-NE).  

That is the subset vN-NE  of Nash equilibriums of the game such that  the corresponding 
outcomes in utility space are not dominated by any other Nash equilibrium outcome and any Nash 
equilibrium outcome not in vN-NE is  dominated by one in the stable set. The global preference 
measure is shown to be equivalent to the product of expected utilities (Nash product) not the often 
taken as social welfare to be the sum of these utilities.  

Thus by assuming the global preference as a established standard of behavior in a society,  
most indeterminacy, undesirability and risk avoidance behaviors  would be no longer the 
consequence of egotistic rational behavior  and perhaps a more amenable and also  rational 
society may be achieved. 
   

 Prime Nash Equilibrium Considerations 2.
 
As an essential concept, and following Nax exposition (2015), game theory provides a sharp 
language to formulate mathematical models of underlying interactions that promise clean 
predictions, now integral parts of the social sciences toolbox.  

From a general theoretical perspective, a game is defined by a mapping from various 
combinations of “strategies” taken by the involved “players” into resulting consequences in terms of 
“payoffs”. A “solution” predicts which outcomes of the game are to be expected. A major issue with 
traditional/neoclassical game theory, however, has been that its solution concepts, such as the 
Nash equilibrium (John F. Nash, 1950) or the strong equilibrium (Robert Aumann, 1959), rely on 
four rather extreme behavioral and informational assumptions. These are:  

1) The joint strategy space is common knowledge. 
2) The payoff structure is common knowledge.  
3) Players have correct beliefs about other players’ behaviors and beliefs.  
4) Players optimize their behavior so as to maximize their own material payoffs (see Nax, 

2915, p. 3). 
The number of mixed strategy Nash equilibriums of a game can be shown to be a function of 

the number of prime Nash equilibriums. These are the Nash equilibriums that are not generated by 
other Nash equilibriums and that can generate all other Nash equilibriums in the game. A pure 
strategy Nash equilibrium is always a prime Nash equilibrium. However, Nash Equilibriums in mixed 
strategies may be either prime or not prime.   

We show every Nash equilibrium in a square bimatrix (nxn) game to be the composition of at 
most k prime Nash Equilibriums, with n ≥ k.  The number k of generators of Mixed strategy Nash 
equilibrium is the order of the equilibrium. Hence prime Nash equilibriums are all of order 1. 
 
2.1 Mixed strategy Nash equilibrium instability  
  
Suppose we have a game with two conflicting Nash equilibriums NE´ and NE´´ competing each to 
be the solution of a given bi-matrix game,   with  corresponding payoffs  [u1´, u2´] and [u1´´, u2´´] ,  
u1´ >  u1´´  and u2´ < u2´´. Then if S = { prime generators of NE´} and T ={prime generators of N´´} 
then,  the order of NE´ is  O (NE´) = |S| and the order of  NE´´ is  O (NE´´) = |T|  if there is no other 
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criteria but Nash equilibrium then the solution would be  the Nash equilibrium generated by the 
prime generators in S and in T and the order of this Nash equilibrium “solution”  would be  |S|+|T| - 
|S∩T|.  Here we point out that the proposed solution may end up not being a reasonable solution. 
To illustrate this point consider the following:  

Example1: Let Γ= (A,B) where 𝐴 = ቀ7 16 9ቁ ,   𝐵 = ቀ9 61 7ቁ. Then N1 = {(1, 1) ; [7, 9]} and N2 = 
{(2,2) ; [9, 7] } are equilibriums of order 1 and N12 = {((2/3, 1/3), ( 8/9, 1/9)t);  [6  1/3,  6  1/3] is a 
mixed Nash equilibrium  of order 2.  

We might be inclined to think here that in the absence a dominant Nash equilibrium and given 
the conflicting nature and symmetry of the two Nash equilibriums in pure strategies, the most 
natural solution would be the Nash equilibrium of order 2 as would be the case in a battle of the 
sexes case.   

Thus, tentatively, let us consider these second order equilibrium as a possible solution: Let the 
mixed Nash equilibrium strategies be x° for player 1 and y° for player 2; and let x* and y* the 
corresponding maximin strategies for players 1 and 2 respectively. Then, x° = (2/3, 1/3) and y° = 
(8/9, 1/9)t.  and x* = (1/3, 2/3) and y* = (1/9, 8/9)t . Immediately, we may observe in the following 
table the strategic instability of the Nash equilibrium strategies relative to the maximin strategies: 
 

 
 
Figure 1.  Nash Equilibrium Maxi-Min Strategies 
 
Here, if both players use their maximin strategies independently of each other, they may   secure a 
value of v =   6  1/3. The same value is obtained co-dependently if both   use their Nash equilibrium 
strategies.  

However if one of the players uses his maximin strategy and the other one uses his Nash 
equilibrium, the player using the Nash equilibrium will get an amount inferior to his maximin strategy 
value. Thus it appears that mixed strategy Nash equilibrium may suffer from strategic instability 
originated not by a player unilateral deviations, but by risk avoiding deviations of other player´s to 
other strategies in their strategy sets to which they remain indifferent in terms of value obtained but 
avoiding any risk of securing  the Nash equilibrium obtainable value.  
 
2.2 Conditions for complete stability of the mixed strategy Nash equilibrium  
 
The above analysis suggest that for complete stability of the mixed strategy Nash equilibrium,  the 
stability condition  usually stated as : (1) ui (s°(i), s°(-i)) ≥ ui (s°(i), s°(-i)) for all players i in N  should be 
complemented with  (2)  ui (s°(i), s°(-i)) ≥ ui (s°(i), s*(-i)) for all player i in N. 

Here, s*(-i)  includes, for at least one player, the  corresponding maximin strategy. That is 
mixed Nash equilibrium strategies should be immune to maximin strategy deviations whenever the 
maximin strategies secure the same value that the mixed strategy Nash equilibrium provides. 

It is especially interesting to note that in the 2-player bi-matrix game of example 1, 
rationalization arguments departing from the assumption that either one of the players is going to 
use his mixed maximin strategies will lead us to conclude that the only reasonable solution for this 
game is the Nash equilibrium in pure strategies determined by the maximin pure strategies for both 
players, namely N1: {(1,1), [7, 9]}.  

y* (Maxmin) y° (NE)

Maxmin) x* 6,33 6,33 6,33 4

 (NE) x° 4 6,33 6,33 6,33
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This example, clearly invite us to rethink where do we stand in considering Nash equilibriums 
as the only possible solutions for the  games  in normal form.  We note that in the battle of the 
sexes with pure strategy Nash equilibriums N1: {(1,1); [7, 9]} and N2: {(2,2) ; [9, 7] }, the mixed 
strategy Nash equilibrium N12 : { ((7/16, 9/16), (9/16, 7/16);  [63/16, 63/16]} satisfies the stability 
condition (2) above and  no  pure strategies Nash equilibrium can be chosen as consequence of  a 
rationalization process with  maximin strategies assumed as point of  departure. 
 
2.3 Balanced Strategies and Nash equilibriums  
 
Let A be an m by m non singular square matrix. The matrix A is said to be row-bala1nced if and only 
if there exists a positive vector of weights γ t = (γ1,…γm) , γi > 0, i =1, …., m,  such that  γ t A = J t   
where J is the m-dimensional vector of 1´s. Similarly, a matrix A is said to be column-balanced if 
there exist a positive  m-vector η= (η1 …ηm ) t , ηj > 0 ,j = 1,…, m , such that  A η = J.  See Owen 
(1995) for similar strategies for 2-person zero sum games. For a concept similar to the one f 
balanced strategies see Pruzhanski (2011). 

Theorem 1  Let Γ = (A,B) be the game in normal form represented by the bi-matrix (A,B) then 
if both A and B are non singular of dimensions m by m and A is col-balanced and  B is row-
balanced then  there is a full supported mixed strategy Nash equilibrium  NE: {(x°,y°); [v1 , v2]} 
where the strategies x° and y°  are given respectively by x° = a γ,  γ t = JtA-1 with  a = 1/γ tJ, and y° = 
bη, η = B-1J and b = 1/J tη. And  v1 = a, v2 = b.   

Given (A,B) as above in theorem 1. 
Theorem 2 Then if both A and Bare row-balanced and column-balanced each then the 

maximin and minimax values of A are the same, namely vA. So are those for B namely vB. 
Theorem 3   If both A and B are row-balanced and column-balanced each, then the full 

supported mixed strategy Nash equilibrium of the game   Γ = (A, B) is given by  NE: {(x°, y°) ; [vA , 
vB]} with x° = z* and  y° = y* where z* is the minimax strategy for B and y* is the minimax strategy 
for A. 

Theorem 4   The 2x2 sub-matrices subtended by any two pure strategy Nash equilibriums in 
a bi-matrix game   Γ = (A, B) are  (1) non-singular (2) row-balanced and column-balanced. They 
generate a mixed strategy Nash equilibrium. Further, the equilibrium value to the players is the 
same as that one secured by maximin strategies .and the equilibrium strategies are the cross 
minimax strategies. That is each player selects the minimax strategy of an imaginary  third player in 
the  other player´s payofff matrix.  

Theorem 5   The 2x2 sub-matrices subtended by any two Nash equilibriums in a bi-matrix 
game Γ= (A, B) are (1) non-singular (2) row-balanced and column-balanced. They generate a 
mixed strategy Nash equilibrium. Further, the equilibrium value to the players is the same as that 
one secured by maxi-min strategies and the equilibrium strategies are the cross minimax strategies. 
That is each player selects the minimax strategy of an imaginary third player in the other player´s 
payoff matrix.  

It follows that the sub-matrix subtended by any number of pure strategy Nash equilibriums in a 
bi-matrix game has the same properties as those of Theorem 4. The same can be said when we 
combine different Nash equilibriums pure or mixed but with independent support. Hence we may 
always derived different Nash equilibriums from different prime or composed Nash equilibriums as 
long as these later ones have independent strategic support.     

With the theorems above we are able to construct all Nash equilibriums for small square bi-
matrix games. For example, if we have A3x3 and B3x3 , suppose the game   Γ=   (A, B) has  m =3 
pure Nash equilibriums then we may obtain ቀ32ቁ = 3 mixed strategy Nash equilibriums of order 2 

and ቀ33ቁ = 1  equilibrium or order 3 That is,  2m -1 – m  mixed strategy Nash equilibriums for each m 

                                                                            
1 The concept of balanced collection in Shapley (1967) and Bondareva (1963) for cooperative games  is similar 
to the one distinguished here. Both concepts have decisive implications for the determination strategic 
equilibrium. 
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pure strategy equilibriums.  
Here it is convenient seeing Quint and Shubik(1994) for a conjecture on the maxi-min number 

of Nash equilibriums.  At this point, m is clearly the maximum number of pure strategy equilibriums 
that a game Γmxm  may possibly have. 
 

 The von Neumann Stable Set of Nash Equilibriums and the Nash Equilibrium Order 3.
Partition 

 
Assuming we have obtained all pure and mixed strategy equilibriums for a given bimatrix game we 
may graph in 2-dimensional utility space all the outcomes of the game. We may assume the game 
to be in non-negative strategic equivalent form. So, all the outcome pairs will be in the non-negative 
quadrant.   

We may also identify the following sets :  
1) Ω = the set of all outcomes of the form [aij, bij] where  aij is an element of the matrix  and bij 

is an element of the matrix B . 
2) 2) P =  the Pareto optimal set of outcomes given by the von Neumann stable set.  of 

elements in Ω relative to strict domination (dom) and strict domination (s-dom) in terms of 
utility vectors.  We say that   [u1 , u2] dom [v1 , v2]  if and only if   u1 ≥ v1 and    v2 ≥ u2.  See 
von Neuman and Morgenstern(1967). 

3) N = the set of all Nash equilibriums  
4) 4) vN-N = The von Neumann stable set of Nash Equilibria. That is the set of Nash 

equilibriums that are not payoff dominated by any other Nash equilibrium. 

Example 2    Let Γ = (A, B)  where A = ൭1 0 00 2 00 0 3൱  and B = ൭3 0 00 2 00 0 1൱ . 

The Nash equilibriums in pure strategies are N1={(1,1);[1,3]}, N2={(2,2);[2,2]}, N3={(1,1);[1,3]}. 
Let Nhk the mixed strategy equilibrium generated by the prime Nash equilibriums Nk and Nh. Then  
N12 ={((2/5, 3/5, 0), (2/3, 1/3, 0)); [2/3, 6/5]}, N13={((1/4, 0,  3/4), (3/4, 0,  1/4)); [3/4, 3/4]} and N23 
={((0, 1/3, 2/3), (0, 3/5, 2/5)); [6/5, 2/3]} are the mixed Nash equilibriums of order 2; and N123 = 
{((2/11, 3/11, 6/11), (6/11, 3/11, 2/11)); [6/11, 6/11]}.    

In figure 2 we may observe all the Nash equilibriums for the given game. It happens that for 
the given game all the prime Nash equilibriums are pure strategy equilibriums and they constitute a 
Pareto optimal set for the game and also a von Neumann stable set of Nash equilibriums.  

 
Figure 2.  Order partition of Nash equilibriums 
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For a given game, if the Pareto optimal set contains a unique pure strategy Nash equilibrium, then 
such dominant equilibrium can be taken as the solution of the game even in adverse risk 
dominance conditions provided society is subscribed to endorse behavior that prioritize social over 
individual benefit. This and other dilemmas where pareto optimal dilemmas occur are solved by the 
Pareto optimal choice if such choice is the one that maximizes global preference.   
 

 The Global Preference Standard of Behavior 4.
 
Often in economic, political and day to day activities, decision makers are faced with situations 
where the individual interest enters in conflict with the interest of society as a whole. Rational 
behavior understood as one consistent with individual maximization of utility, under conflict of 
interest, situations where indeterminacy emerges, such may be narrowed when the participants 
subscribe to higher standards as the one of global preference.  

In terms of von Neumann and Morgenstern utilities, Nash (1954) gave a series of axioms to 
characterize a unique solution to the bargaining problem that can be summarized as the one that 
maximizes the product of expected utilities. It can be shown that the maximization of such (Nash) 
product actually gives as a result, the outcome that maximizes a consistent measure of global 
preference.   

It also can be established that most preferent solutions tend to eliminate inequities. If players 
abide by the global preference standard of behavior, the solution to the game in example 2 above 
would be the equity solution N2 that gives 2 units of utility to each player.  

In the case of a prisoner´s dilemma game, the most preferent solution would be the Pareto 
optimal outcome. Such outcomes would be the result of players´ rational behavior with independent 
selection of strategies that act rationally according to certain higher values.  

Trying to capture the real world complexity, it is important to introduce –as crucial- the notion 
of expected utility.  Following Nax specific propositions (Nax, 2015) one can assume that an 
organism must choose from action set of “x” options under assured conditions.  There is always 
uncertainty as to the degree of success of the various alternatives in “x” which means essentially 
that each x 2 x determines a lottery –for example- that pays i offspring with probability pi.x; for i 0; 1; 
2; …n. 

In this case, the expected number of offspring from this lottery is .x/ D Pn j D1 jpj .x/. Let L be 
a lottery on X that delivers xi 2 X with probability qi for i D 1; : : : ; k. The probability of j offspring 
given L is then Pk iD1 qipj .xi/, so the expected number of offspring given L is Xn j D1 j X k iD1 qipj 
.xi/ D X k iD1 qi X k iD1 jpj .xi/ D X k iD1 qi .xi/; which is the fundamental aspect of expected value 
theorem with utility function (see Nax, 2015, and Brekke, K, 2011). 
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Appendix A1 
 

1. Nash Equilibrium instability (NE).  In NE no player can increase his utility by deviating 
alone (given the other players stay put). However by deviating, alone, (using his maxmin 
strategy) a player may increase the likelihood (decrease the uncertainty) of obtaining with 
certainty the same utility level offered by the NE strategy. Other players that stay put with 
their NE strategy may end up with less utility that the one secured by his maximin strategy  
That is, a mixed strategy NE may not be risk-preference stable relative to maximin 
strategies.  

2. Transferring non transferable utility Consider a utility vector attainable by a coalition 
v(S) = ( u1, …., us). 

3. Global Preference solution   Let Γ= (A,B) where 𝐴 = ቀ9 00 5ቁ 𝐵 = ቀ4 00 8ቁ,   .Then N1 = 
{(1, 1) ; [4, 9]}  and N2 = {(2,2) ; [8, 5] } are equilibriums of order 1 and N12 = {((2/3, 1/3), ( 
5/14, 9/14)t);  [2  2/3, 3  3/14] is a mixed Nash equilibrium  of order 2.GP(O) = 8 x 5 = 40   
GP(F) = 9 x 4 =36  (battle of the sexes (O)pera vs. (F)utball The  global-preference 
solution is N2. 

4. Maximin Stability Under what conditions are maximin strategies stable? ie. no unilateral 
deviation would give a higher utility to the deviating player. 

 


