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Abstract

In this paper, we analyze for stability the problem of planar vibrational motion of a satellite about
its centre of mass. The satellite is dynamically symmetric whose center of mass is moving in a
circular orbit. The in-plane motion is a simple pendulum-like motion in which the axis of symmetry
of the satellite remains in the orbital plane. It is expressed in terms of elljptic functions of time.
Using Routh’s equations we study the orbital stability of planar vibrations of the satellite, in the
sense that the stable in-plane motions remain under perturbation very near to the orbital plane.
The linearized equation for the out-of-plane motion takes the form of a Hill's equation. Detailed
analysis of stability using Floguet theory is performed analytically and numerically. Zones of
stability and instability are illustrated graphically in the plane of the two parameters of the
problem: the ratio of moments of inertia and the amplitude of the unperturbed motion.

1. Introduction

Suppose that the satellite is a dynamically symmetric rigid body and its center of mass moves in a
circular orbit. A possible solution of the equations of motion represents what is called in-plane
motion. That is a pendulum-like motion in which the axis of symmetry of the satellite remains all
the time in the orbital plane (see e.g. [1]). The aim of this paper is to study the stability of the
planar periodic motion, in particular, the stability of vibration motion. Markeev [2] was the first to
study the problem in the above formulation. He studied the orbital stability of the planar periodic
motion for dynamically symmetric satellite whose polar axis of the ellipsoid of inertia is shorter than
the equatorial ones. But, digrams of stability contained some imperfections because of low
accuracy of numerical calculations. Akulenko, Nesterov and Shmatkov [3] pointed out these
imperfections. Markeev and Bardin [4] studied the problem of stability of the planer periodic
motions in the nonlinear setting using the normal forms of Birkhoff. Such analysis can be
performed only numerically.

In this paper, we study the stability of plane vibrational motions of a satellite in a circular
orbit. The problem is reduced to a form of Hill's equation, i.e. a single second-order linear
differential equation with a periodic coefficient. It turned out that this equation is a generalization
of Lame’s equation of the first rank. To deal with this equation we combine Floquet theory [6] with
the method devised by Ince for Lame’s equation, which consists in finding primitive periodic
solutions in the form of Fourier series expansions. Point sets in the space of parameters,
corresponding to those solutions separate zones of stability and instability. We obtain a detailed
picture of those zones, analytically and in a purely numerical treatment. Both analyses are in
complete agreement.
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2. Mathematical Formulation
2.1 Description of motion

Denote by 0 the center of the Earth and by 0’ the current position of the center of mass of the
satellite describing a circular orbit of radius R with centre at 0, see fig.1. Let 0XYZ be an inertial
frame of reference, 0'x,y,z, be the orbital system with x; — axis along00’, y, along the tangent
to the orbit in the direction of motion of the satellite and z; — in the direction orthogonal to the
orbital plane and let 0'xyz be the system of central principal axes of the satellite with moments of
inertia A,B and C, respectively. Let also a,B,y be the three unit vectors in the directions of
x1,Y1.,2Z1 and w the angular velocity vector of the satellite relative to the orbital system, all
components being referred to the body system 0’xyz. To describe the orientation of the satellite
relative to the orbital frame we shall use Euler's angles y the angle of precession around the
z, —axis, 0 the angle between the axis of the body and the orbital plane (so that the nutation angle
between z and z, —axis is%— 0) and ¢ the angle of proper rotation of the satellite around its

Z —axis.

Fig.1

In those variables we can write

a = (cosy cos@ — sinf sing siny, —cosy sing — sinb cosp siny, cosfsiny)

B = (siny cose + sinb sing cosy, — siny cose + sinb sing cosy, —cosOcosy)

Y = (cosOsing, cosOcosg, sinfh)

w = (PcosOsing — Ocose,PcosOcose + Osing, Psing + @)

In what follows we study the rotational motion of the satellite about its centre of mass. It is
supposed that the rotational motion is independent of the orbital motion of the satellite with
uniform angular speed Q (say), given by the expression Q% = R—”3 where [ is Gauss’ constant of the

Earth [1]. The Lagrangian of the rotational motion can be written as
L= %wl. w-—V (1)
w=w+Qy 2)
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where w the absolute angular velocity of the satellite and V its potential function in the
gravitational field of Earth. A normally acceptable approximate form (see e.g. Beletskii [1]) is:

V=;T”3a1.a=%(12al.a 3)
Substituting (2) and (3) in (1) we get

2
L= %(Ap2 + Bq* + Cr?) + (Apy1 + Bqy, + Crys) + Q7(}' Ly+3ala) 4

The equation of motion of the satellite relative to the orbital frame, corresponding to the
Lagrangian can be written in the Euler-Poisson form [5]:
G+ox(6-20p1) =3 axal—Q*y xyI

adt+twoxa=0,B+woxB=0, y+wxy=0 (5)
wherel = %(Trl)d — 1. This system admits Jacobi's integral
G)wl.w+%2(3al.a—yl.y)=h (6)

It was noted in [5] that this system of equations (6) of motion of the satellite on a circular
orbit is form-equivalent to the equations of motion of an electrically charged rigid body about a
fixed point of it, while acted upon by gravitational, electric and magnetic fields. The system (5)
admits a simple solution, which represents motion of the satellite with two of its principal axes
always in the orbital plane and the third orthogonal to it. Let the last axis be the x —axis. It is not
hard to see that this solution is

w=wy,w= 1[)

a = (0,cosy,siny), P =(0,—siny,cosyp), y=(1,0,0)

When 3 = 0 the satellite takes the relative equilibrium position with one of its axes directed to
the Earth’s centre and another directed along the tangent to the orbit. In general we have two
types of motion: vibration and rotation. Each is centered about one of the equilibrium positions.
This occurs according to the ratio a =% of moment of inertia of the satellite, restricted by the

triangle inequality to the interval [0, 2]. The subinterval

0 <a<1 corresponds tothecase C <A =B

l<a<2 tothecaseC>A=8B.

For the first case the satellite is moving around the tangent of the orbital plane and the
second cases the satellite is moving around 00'.

2.2 Eguation of motion

We may express the Lagrangian of the problem in the form:
2

1 2 2 1 2 Q 2 2
L=ZA0@" +47) +5Cr° + Q[APys +ay2) + Crys] + —[AG1 +7v3)
+Cy3 + (C - A)(1 - 3a3)] (7)
Casei(0<a<1):
Under the condition i the Lagrangian is (¥ = §+ Y)
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Fig.2
A C . 5l . , o AL
LZ[ECOS 0+Esm 6]'1’ + [Q(A cos? 0 + Csin 9)+C(p51n0]‘}’+59

+Q¢Csin 6 + gq‘yz + %2 (A = C)[cos? O + 3 cos? ¥ cos? 6] (8)

Now, we note that ¢ is a cyclic coordinate where :
oL . , _
Po=75,= C[(¥ +Q)sind + ¢ =C,
p=0C—(¥+Q)sin6 9)
Next, we ignore ¢ and construct the Routhian:
A ... 02
R 22[92 +¥2cos? 0] + [QAcos? 0 + CClsmO]'i’+7[C —A+

Acos? 8 +3(4—C)cos? ¥ cos? 0] + % (2Qsin 8 — C;) (10)

The satellite can perform the in-plane motions only if the real constant ¢, =0.

According to this condition the Routhian takes the form:
2

A . , .
R =E[92 + %2 cos? 0] + [QA cos? 0 + Csin0]¥ +—-[C—A+
Acos? 6+ 3(A — C)cos? ¥ cos? 6] (11)
The equations of motion of the satellite in this case become
AP cos? 0 — 2A0(¥ + Q) sin 6 cos 6 + 30%(A — C) cos? Osin¥ cos ¥ = 0 (12)

AG 4+ A¥? sin 6 cos 6 + 2AQ¥ sin 0 cos @ + 30%(A — C) cos? Wsin O cos @ + Q2Asind =0 (13)
Defining the non-dimensional time t = Qt and denoting derivatives with respect to

T by ()’the non-dimensional equations of motion become:

P cos?0 —20"(¥' +1)sinfcosh +3(1 —a)cos?fsin¥cos¥ =0 (14)
0" +W'?sinf cosf + 2¥'sinf cos§ + (1 — a) cos® ¥ sin 6 cos @
+sinf =0 (15)

Caseii(1<a<2):

In this case the equatorial axis remains approximately orthogonal to the plane of the orbit and
the polar axis performs small angular oscillations about this plane so we shall use Euler’'s angle
1y the angle of precession around the z; —axis
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Fig.3

Now, the Lagrangian function takes the form:
L = (Gcos? 0 +=sin? 0) )2 + [A(A cos? 6 + C sin? ) + Cp sin O] + 262 + Q¢C sin 6 + =2 —
Q72[4(C—A) cos?0 —2C + A—3(C — A) cos? 1 cos? 0] (16)
a : . .
p¢=£=C[(lp+Q)sm0+(p]=C2 (17)

and we get the Routhian
2

A . . .0

R= 2[92 +1)? cos? 0] + [QA cos? 6 + CC, sin O]y +7[C —A+

(44 — 3C) cos? 6 + 3(C — A) cos?1p cos? ] + % (2Qsin 8 — C) (18)

Then the equations of motion are:

A cos? 8 + [CC, cos @ — 2A(Y + Q) sin 6 cos 8]0 + 30%(C — A) cos? @ sinpcosyp = 0 (19)

A + AY? sin 6 cos @ — [CC, — 2AQ sin 8] ) cos 6 + 302(C — A) cos?p sin 8 cos 6

—CCyQcos6 + Q%44 —3C)sinfcosf =0 (20)

And in terms of the non-dimensional time

' cos? 0 — [aCycos@ —2(y" + 1) sinB cos 10" + 3(a — 1) cos? Osinypcosyp =0  (21)

0" +1'?sinf cos§ — (aC, — 2sinO)Y’ cos O + 3(a — 1) cos? P sin 6 cos §

+(4 - 3a) sinBcosB—aTCZcose =0 (22)

The equations (14), (15) , (21) and (22) describe the motion of the satellite relative to the
orbital frame.

3. Solution for in-plane motion

Assume that 0 < a < 1, by backing to equation (14) the in-plane motion 6 = 0 is described by

Y'"+3(1—a)sin¥cos¥ =0 (23)
Integrating this equation we obtain
P2 4+3(1—a)sin?¥ =0 (24)

Where h is a measure of the energy of the in-plane motion. We will show that the motion is
classified as follow:
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Fig.4

From equation (24) under the condition ( 0 < & <1)
W' =+h—3(1—-a)sin?¥
and on separation of variables

=ix/ﬁfd‘[

f 1—k#sin2y
3

k%zz(l—a)

If |ksl > 1,k < 3(1 — ) we define v, = —

Y(r) = sin™?! (vlsn (,/3(1 - a)r,v1)>, ¥Y'(1) = Vhen(y/3(1 — &)1, v;)

if kil <1, h>3(1—-a)

¥(t) = am( +Vh 1, ky), ¥' (1) = +Vhdn(Vht, ky)

For second case when we study the in-plane motion 8 = 0 and C, = 0 then

Y +3(a—1)sinypcosy =0

P'?+3(a—1)sin®yY =h

V' = +/h—3(a - 1)sin2
3

k§=z(05—1)

de
f—=4_m/ﬁfdr
1—kZsin2y

if |kl <1,h>3(a—-1)
(@) =am(+Vh1, k), P'(v) = +Vhdn(Vht, k;)

1
if kol > LR <3(a = 1),v, =1~
2

P(r) = sin~?! (vzsn (\/3(1 —a)T, v2)>, Y'(r) = vhen (w/3(1 —a)T, vz)

4, Studying of Vibration motion

4.1 Stability of in-plane motion.

The linear stability equation w. r. to 6 is

——— e —————
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0"+ P2 +1+42¢' +3(1—a)—-31—-a)sin?¥]f=0 O<a<1l) (32)
0" +[Y'2+1+2yp' —3(a—1)sin? )6 =0 (l<a<?2) (33)
Let w =/3(1 — @) and ¥ = am(w). Using (26) and (32) we get
dze 1 v
Tt [1 +v2 + e 2vZsn?(w,vy) + J;(l_iu)cn(w, vl)] 6=0 (34)
In trigonometric form with siny = vlsin B
d?e 1
(1 —v#sin B)dﬁz vZ smﬁcosB a5 + 1+ v? +m— 2v#sin? B
+% cos )0 =0 (35)
This equation can be transformed to hill's equation as follow:
Let 6 = gf
" 3v$sin? 28 2+3(2+3v% cos 28)(1-@)+4v1,/3(1-a) cos _
g+ [16(1—1/12 sin? )2 6(1-a)(1-v% sin2 B) ] g=0 (36)
When w = ,/3(0: — 1)t and ¥ = am(w) then use equations (30) and (33) to get
aze »
=t [ 2+ =T 2v2sn?(w,v,) + J%cn(w, vz)] =0 (37)

We will use the same previous method to get the trigonometric form

siny = v, smB & Y= \/ﬁcosﬁ

dze 1

1- - 2 2 cin2

(1—-vZsin?p)— T —vZsinpg cosB BT + vz + 3@-1D V5 sin® 8
2V,

+ g cos B =0 (38)
Transform it to Hill's equation

" 3V% sin? 2B 2+9vZ (a—1) cos 2f+4v. J3(@-1)cos B _
g + [16(1—1/% sin? )2 + ’ 6(a—1)(1-v3 szin2 B) ]g =0 (39)

The equations (36 & 39) are periodic with periods 2m and 4w and depend on two
parameters(a, ). In the following subsection we deduce the equations of the boundaries between
zones of stability and instability in the plane of those parameters.

4.2 The stability of vibration motion analytically and numerically

Using Floquet's theorem we will study the stability of equation (35) both analytically and
numerically. For simplicity we write the equation in the form

(1 —v2sin2 g) L2 dB2 —vZsinf cosﬁ%+ (b—2v2sin? B +dcosp)f =0 (40)
b=1+v2+
I T e )
2vq

V31 —a)

and equation (38) in the form

(1—v2sin? g) L2 dB2 —vZsinp cosﬁ% + (by — 2vZsin?  + d;cos 5)0 = 0 (41)
2 1
by =v; +3(a—1)
d1 — 2v,
V3(a-1)

and the non-trivial periodic solutions of equation (40) are:
4.2.1 Odd2m periodic solution:

Such solution can be expressed as a Fourier series:

——— e —————
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0 =37 oA, sinnf (42)
Substitution from (42) in (40), yields the following recurrence relations for coefficients 4,

d
(b - 1_V12)A1 +EA2 _V12A3 =0
d d 5,
EAl + (b _4+V1)A2 +EA3 _EV1A4 =0

d 7, d "9,
EA2+<b_9+EV1)A3 +_A4_EV1 A5=O

2
Forn > 2
_MV% Agp—2 + gAZn—l + (b —4n® + (2n® — D)4z, + §A2n+1
B n(2n + 3) VA, =0
_wlﬁzflzn—l + gAZn + (b - (@2n+1)*+ wﬁ>1‘lm+1
+§A2n+2 - %folzms =0 (43)

For the second case the solution in a Fourier series gives the recurrence relations for
coefficients 4,, in the form

d
(b — 1 —v2)A, +71A2 —v24; =0

d d 5
71141 +(by — 4+ VDA, +71A3 —5v34,=0
7142 + (bl -9 +§V2)A3 +7A4, —5V2A5 =0
Forn>2

n(2n — 3) d d
————ViAmo + ?1A2n—1 + (by — 4n® + (2n% — 1)v5) Az + 71A2n+1

nZn+3
_QVZZAZn+2 =0

(2n-1)-1 d 2n+1)2-2 d

— 2D (20 — V3 Agnoy + D Agy + (b — @n+ 12 + D) Ay + D dgs -
nent)+z V3Azn43 =0 (44)

2

4.2.2 Even2m -periodic solution

Seeking a solution of the form
0 =Y_oB,cosnf (45)
the substitution in equation (40) yields the recurrence relations for coefficients B,,:

d
(b _Vlz)BO +EBl = 0
d
dBy + (b—1)B, +§B2 —viB; =0

2 d 2 d 5 2
leO +EBl + (b_4+V1)BZ +_B3 _Ele4 =0

2
d 7, d_ "9,
EBZ +(b—9+EV1>B3 +EB4—EV1B5 =0
Forn>2
n(2n—3)

2 d 2 2 2 d
5 ViBop_p + EBZn—l + (b —4n* + (2n® — 1) v{)By, + EBZn+1
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n(2n + 3)
————V{Byn42 =0

n2n—-1)—-1 d (2n+ 1)2 -2)
d (2n+5)+2
+5Bonsz — %V%an+3 =0 (46)

The recurrence relations for coefficients B,for the second case
d
(by —v3)B, + ?131 =0

d1 2
dlBo + (bl - 1)31 +7BZ - VzB3 =0

d d 5
V2B, + 7131 + (b, —4+v3)B, + 7133 —§v2234 =0
7B2 + (bl -9 +EV2)B3 +7B4_ _EVZBS =0
Forn > 2
n(2n - 3) d d
—————"ViByp_» + 71B2n—1 + (by — 4n* + (2n* — 1)v5)B,, + 71B2n+1
n(2n + 3)
—TVzZBZnn =0
n(2n—1)—1 d, 2n+1)2-2)
—ngBan + ?BZn + <b1 -(@2n+1)*+ fvzz Bon+1
d (2n+5)+2
+7132n+2 - %V§32n+3 =0 (47)

4.2.3 Even 4n -periodic solution

The solution in this case has the form
60 = Y=o Cp cos B + Yoo Wy cos(n + 1) (48)
Substitution in equation (40) yields the recurrence relations for coefficients C,and W,

d
(b —vHC, +56=0
d
dCy+ (b —1)C; +EC2 —-viC; =0

2 d 2 d 5 2
v1C0+EC1+(b—4+v1)C2 +§C3 - -viC, =0

2
d 7 ) d 9 2
ECZ+(b—9+EV1>C3+EC4—EV1C5:0
d 1 2 5 2 d 7 2

(b+E—Z—§V1>W0+(EV1 +§)W1—EV1W2=0

d 9 2 9 1 2 d 27 )
(E"'Evl)WO+<b_1+§V1)W1+EW2_EV1W3=O

Forn =2

n(i2n -3 d d
_¥V12C2n—2 + ECZn—l + (b —4n® + (2n* — Dv])Cyp + ECZ"H
n(2n + 3)
—————V{Cns2 =0

n2n—-1) -1 d 2n+1)%2 -2
—%V%nq +t5 0t <b -(@2n+1)*+ %Vf) Con+1
d n2n+5)+2 ,
+EC2"+2 _fh Conyz =0
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2n-5(0Cn+1) d 2n+1)? (2n+1)?2-8
d 2n+1)(2n+7
+5Wn+1 - ant ig = )V12Wn+2 =0 (49)

And for second case the recurrence relations for coefficients C,and W,
d
(by =)o + 5 €, =0

d
d,Co + (by — 1C, +71C2 —v2C3 =0

2 dy 2 da 5 50 _
1/ZCO +7C1 + (bl _4+V2)C2 +?C3 —EVZC4 =0

7C2+(b1 9+§V2)C3+?C4_5V2C5=0
da 1 7, 5 , d 7,
(b1 +§_Z_§VZ)W0 + (EVZ +7)W1 _EVZWZ =0
d 9, 9 1, dy 27,
(7+1_6VZ)W0+(b1_Z+§V2 )Wl +?W2_1_6V2W3 =0
Forn =2
n(2n — 3) d d
- V5Con_p + 716211—1 + (by — 4n* + (2n® = Dv5)Cpp + 7162n+1
n(2n + 3)
————"V3Cn42 =0
n2n—-1)—1 d, 2n+1)%2-2
— VGt + 5 Con (b — @ D 3 | G
dy n(2n+5) + 2
+?C2n+2 —fvzzcmw =0
2n-5(0Cn+1) dy 2n+1? (2n+1)?%-8
d 2n+1)(2n+7
5 Wy = EEREEDVIW, 5 = 0 (50)

4.2.4 Odd A -periodic solution

Assuming such solution in the form
0 = Y=o Gpsinnf + X3_o Hy sin(n + ) (51)
Substitution in (40) yields the following recurrence relations for coefficients G,and H,:

d
(b_l_vlz)Gl +§GZ_V1263 =0
d d. 5,
EGl+(b_4+V1)Gz+EGg_zle4 =0

d 7N d o,
EGz+<b_9+§V1)Gg +§G4_EVIGS =0

d 1 7, d 5 , 7
(b_E—Z—§V1>HO+(E—RV1)H1—RV1H2:0
(d 9 Z)H +<b 9+1 2)H +dH 27 2H, =0
2 16'1) M0 4 gVt) Ty T gVits =
Forn > 2

nZn-1)—1 d aon d
- V{Gop1 + EGZn + (b -(2n+1)%+ %ﬁz) Gonyr + EGZn+2

n(2n+5) + 2

2 V12G2n+3 =0
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n(2n—3) , d 5 ) d

——— Vil + EGZn—l + (b —4n® + @n2-1)v{) Gy + EGZn+1
n(2n + 3)

————ViGaps2 =0
2n-5(0Cn+1) d 2n+1?* (2n+1)%*-8
a (2n+1)(2n+7)

FE Hyyy - EEDO T oy =0 (52)

For second case the recurrence relations for coefficients G,and H,, are :
d
(b, — 1 —v3)G, +7102 —v2G; =0

d 3 d . 5,
7G1 + (b1 —4+V2)G2 +7G3 —§V2G4 =0
d 7, d 9,
762 ‘; (bll_ 97+ EV2> G3 ;70;_51/265 jo
1 1
(b1 —7—1—51/22)1‘10 + (7—EV22)H1 _EVZZHZ =0
d, 9 9 "1, d, 27
(7—1—61/2)1'10 + <b1 _Z +§V2)H1 +7H2 —1—61/21‘13 =0
Forn>2:
n2n—-1)—1 dq 2n+1)%2-2
— V3G + 5 Gan + by — 2+ 1+ 2 | G
d, n(2n+5) + 2
+7G2n+2 —fvzzc"zms =0
n(2n — 3) d, dq
— V3G + 70271—1 + (by — 4n? + (2n? — 1)v5) G,y + 7GZn+1
n(2n+ 3)
—TVzZszz =0
2n-5(2n+1) d, 2n+1)? (2n+1)>2%-8
d 2n+1)(2n+7
+ % Hyyy = EEEE D2 =0 (53)

The systems of equations (43,46,49,52) and also (44 , 47, 50, 53) are homogeneous infinite
systems. The boundary curves can be drawn by solving the determinately equations. We shall
study the stability and instability zones in the plane of parameters a, ¥, where y,is the amplitude
of vibrations (v = siny).

4.3 Numerical and analytical diagrams of stability

Let the symbols I, , G, denote the (s) zones of stability and instability respectively. The zones of
+ +

stability and instability are separated by the curves ]:[ , ]:[ whose equations describe the
2s 2s5+1

distribution of eigen-values for boundary problems of periods 277 , 477 . We shall draw these
curves by solving the last four determinants. We classify the curves as:

" _
I1 for even 27r — periodic solutions and [ for odd 277 — periodic solutions.
2s 2s
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I1 for even 47z — periodic solutions and [ for odd 47 — periodic solutions.

25+1 2s+1
+ +
We now intend to find the intersections of [ , [ withiy, =0. Ontheline ¥, =0 , the
2s 2s+1
equation of vibration (36) takes the form
1
g +[l+———]g=0 (54)
3(1-a)
let 1+3(1 2 =@ where @ is constant , then & = 1—— for W =2,3,4,56 ...
. 8 _ 23 _ 44 B 71 _ 104
aq _§'a2 _ﬁ,a—j = E,a‘} —ﬁ,as = m, ......

and so on. There exist two curves with the same period one even and other odd passing
through each of those values of a. We note that the stability zones occupy the lower part near

+

to g, = 0. For example, two curves, one odd I1 and the other even [] . with the same period
2s+1 2s+1

47 ata —g and H H with period 277 ata =2 (see Fig. 5).
2s 2s

Fig.5
+ +

In the same manner as in the case of (0 < <1 ) we get the intersections of [] , [T with
2s 2s+1

V, = Oto determine the zones of stability and instability for the casel < or < 2

Equation (39) becomes:

1
/I
g+——g=0 (55)
xa D

Let

3((1 n=n ? where n(+)veinteger.then0(=$+1 form =1,2,3,4

........
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A==, Q) = —, 0 ==, Qg = —— ) e o
173120 T 270 T 48

and so on. The zones of stability and instability are shown in Fig. 6.

Fig.6
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