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Abstract 
 

In this paper, we analyze for stability the problem of planar vibrational motion of a satellite about 
its centre of mass. The satellite is dynamically symmetric whose center of mass is moving in a 
circular orbit. The in-plane motion is a simple pendulum-like motion in which the axis of symmetry 
of the satellite remains in the orbital plane. It is expressed in terms of elliptic functions of time. 
Using Routh’s equations we study the orbital stability of planar vibrations of the satellite, in the 
sense that the stable in-plane motions remain under perturbation very near to the orbital plane. 
The linearized equation for the out-of-plane motion takes the form of a Hill’s equation. Detailed 
analysis of stability using Floquet theory is performed analytically and numerically. Zones of 
stability and instability are illustrated graphically in the plane of the two parameters of the 
problem: the ratio of moments of inertia and the amplitude of the unperturbed motion. 

 

 
1. Introduction 
 
Suppose that the satellite is a dynamically symmetric rigid body and its center of mass moves in a 
circular orbit. A possible solution of the equations of motion represents what is called in-plane 
motion. That is a pendulum-like motion in which the axis of symmetry of the satellite remains all 
the time in the orbital plane (see e.g. [1]). The aim of this paper is to study the stability of the 
planar periodic motion, in particular, the stability of vibration motion. Markeev [2] was the first to 
study the problem in the above formulation. He studied the orbital stability of the planar periodic 
motion for dynamically symmetric satellite whose polar axis of the ellipsoid of inertia is shorter than 
the equatorial ones. But, digrams of stability contained some imperfections because of low 
accuracy of numerical calculations. Akulenko, Nesterov and Shmatkov [3] pointed out these 
imperfections. Markeev and Bardin [4] studied the problem of stability of the planer periodic 
motions in the nonlinear setting using the normal forms of Birkhoff. Such analysis can be 
performed only numerically. 

In this paper, we study the stability of plane vibrational motions of a satellite in a circular 
orbit. The problem is reduced to a form of Hill’s equation, i.e. a single second-order linear 
differential equation with a periodic coefficient. It turned out that this equation is a generalization 
of Lame’s equation of the first rank. To deal with this equation we combine Floquet theory [6] with 
the method devised by Ince for Lame’s equation, which consists in finding primitive periodic 
solutions in the form of Fourier series expansions. Point sets in the space of parameters, 
corresponding to those solutions separate zones of stability and instability. We obtain a detailed 
picture of those zones, analytically and in a purely numerical treatment. Both analyses are in 
complete agreement.  
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where  the absolute angular velocity of the satellite and V its potential function in the 
gravitational field of Earth. A normally acceptable approximate form (see e.g. Beletskii [1]) is: 

          (3) 
Substituting (2) and (3) in (1) we get  

   (4) 
The equation of motion of the satellite relative to the orbital frame, corresponding to the 

Lagrangian can be written in the Euler-Poisson form [5]: 
 

                 (5) 
where . This system admits Jacobi's integral 

      (6) 
It was noted in [5] that this system of equations (6) of motion of the satellite on a circular 

orbit is form-equivalent to the equations of motion of an electrically charged rigid body about a 
fixed point of it, while acted upon by gravitational, electric and magnetic fields. The system (5) 
admits a simple solution, which represents motion of the satellite with two of its principal axes 
always in the orbital plane and the third orthogonal to it. Let the last axis be the axis. It is not 
hard to see that this solution is 

 
 

When  the satellite takes the relative equilibrium position with one of its axes directed to 
the Earth’s centre and another directed along the tangent to the orbit. In general we have two 
types of motion: vibration and rotation. Each is centered about one of the equilibrium positions. 
This occurs according to the ratio  of moment of inertia of the satellite, restricted by the 
triangle inequality to the interval [0, 2]. The subinterval 

 corresponds to the case   
 to the case  . 

For the first case the satellite is moving around the tangent of the orbital plane and the 
second cases the satellite is moving around . 
 
2.2 Equation of motion 
 
We may express the Lagrangian of the problem in the form: 

 

                       (7) 
Case i (  ): 
Under the condition i the Lagrangian is (  ) 
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    (32) 
    (33)  

Let  and . Using (26) and (32) we get 

               (34)                 

In trigonometric form with    
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This equation can be transformed to hill's equation as follow: 
Let  

               (36) 

When    and  then use equations (30) and (33) to get  

     (37) 

We will use the same previous method to get the trigonometric form 
 

 

                               (38) 

Transform it to Hill's equation  
                   (39) 

The equations (36 & 39) are periodic with periods  and  and depend on two 
parameters . In the following subsection we deduce the equations of the boundaries between 
zones of stability and instability in the plane of those parameters. 
 
4.2 The stability of vibration motion analytically and numerically 
 
Using Floquet's theorem we will study the stability of equation (35) both analytically and 
numerically. For simplicity we write the equation in the form 

        (40) 

 

 

and equation (38) in the form   
       (41)  

 

 

and the non-trivial periodic solutions of equation (40) are: 
 
4.2.1 Odd  periodic solution: 
 

Such solution can be expressed as a Fourier series: 
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                                       (42) 
Substitution from (42) in (40), yields the following recurrence relations for coefficients   
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For the second case the solution in a Fourier series gives the recurrence relations for 

coefficients  in the form 
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Seeking a solution of the form 
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The recurrence relations for coefficients for the second case  
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And for second case the recurrence relations for coefficients and  
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4.2.4 Odd  -periodic solution 
 
Assuming such solution in the form 

                    (51) 
Substitution in (40) yields the following recurrence relations for coefficients and  
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                         (52) 
For second case the recurrence relations for coefficients and  are : 
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The systems of equations (43,46,49,52) and also (44 , 47, 50, 53) are homogeneous infinite 

systems. The boundary curves can be drawn by solving the determinately equations. We shall 
study the stability and instability zones in the plane of parameters ,  where is the amplitude 
of vibrations . 
 
4.3 Numerical and analytical diagrams of stability 
 
Let the symbols  denote the (s) zones of stability and instability respectively. The zones of 

stability and instability are separated by the curves
±

∏
s2

,
±

+
∏
12s

 whose equations describe the 

distribution of eigen-values for boundary problems of periods π2  , π4 . We shall draw these 
curves by solving the last four determinants. We classify the curves as: 

+
∏
s2

for even −π2  periodic solutions and 
−

∏
s2

for odd −π2  periodic solutions. 
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