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Abstract 

 
Albanian economic time series show irregular patterns since the 1990s that may affect economic analyses 
with linear methods. The purpose of this study is to assess the ability of nonlinear methods in producing 
forecasts that could improve upon univariate linear models. The latter are represented by the classic 
autoregressive (AR) technique, which is regularly used as a benchmark in forecasting. The nonlinear family 
is represented by two methods, i) the logistic smooth transition autoregressive (LSTAR) model as a special 
form of the time-varying parameter method, and ii) the nonparametric artificial neural networks (ANN) that 
mimic the brain’s problem solving process. Our analysis focuses on four basic economic indicators – the CPI 
prices, GDP, the T-bill interest rate and the lek exchange rate – that are commonly used in various 
macroeconomic models. Comparing the forecast ability of the models in 1, 4 and 8 quarters ahead, we find 
that nonlinear methods rank on the top for more than 75 percent of the out-of-sample forecasts, led by the 
feed-forward artificial neural networks. Although the loss differential between linear and nonlinear model 
forecasts is often found not statistically significant by the Diebold-Mariano test, our results suggest that it 
can be worth trying various alternatives beyond the linear estimation framework. 
 

Keywords: Albania, linearity, time-varying, nonlinear models, artificial neural networks 
 
 
1. Introduction 
 
The Albanian economy has experienced various structural changes in the past three decades. During 
its transition to a market-oriented economy, the country had to undertake many reforms in order to 
liberalize its economy and develop the financial system (such as privatizations, removal of price 
administration, free trade agreements, financial integration, capital account liberalization, etc.). 
Besides, a number of stabilization policies have been taken in particular to cope with the domestic 
1997 collapse of pyramid schemes and later on with the long-lasting effects of the 2009 global 
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financial crisis. These socio-economic changes have had important influence on the macroeconomic 
performance, leaving visible footprints on financial and real economic time series. 

The sudden jumps or irregular patterns that are witnessed in many statistical data can increase 
instability of model parameters and negatively affect policy analyses with linear methods. For that 
reason, time-varying estimations as well as the newly developing nonlinear methods with neural 
networks have been tried in the literature as additional tools to help improve economic and forecast 
analyses. By construction, nonlinear methods commonly use more parameters than their traditional 
linear counterpart and are, therefore, expected to provide better in-sample model explanation. For 
that reason, many seminal studies including Stock and Watson (1996) have relied on the out-of-
sample forecasts in order to shed light on the usefulness of nonlinear methods. 

This article aims to contribute to the literature on nonlinearity by assessing the forecast ability 
of nonlinear methods and compare it to the performance of popular linear models. The latter are 
represented by the traditional linear autoregressive (AR) models, whereas nonlinear methods make 
use of time-varying econometric techniques with smooth transition autoregressive models, as well as 
feed-forward neural networks that are a computer artificial intelligence method. Moreover, the 
findings should provide some insights to macroeconomic modelers whether to enhance their suite of 
models with nonlinear techniques or not. Therefore, our analysis focuses on four illustrative 
statistical series – namely consumer prices, GDP, interest rate and the exchange rate – which are 
commonly used in various macroeconomic models and their developments and prospects are 
regularly discussed by policymakers. To keep it simple, the analysis concentrates only on univariate 
models, and leaves the scrutiny with multivariate specifications for further research.  

To preview our findings, nonlinear methods rank on top three models for more than 75 percent 
of the out-of-sample forecasts, particularly led by the artificial neural network models. The result is 
consistent in all of the intended forecast horizons: the 1, 4 and 8 quarters ahead forecasts. On the 
other hand, the linear AR models appear successful and outperforming nonlinear methods when 
forecasting CPI prices at almost all horizons, and perhaps in predicting gross domestic production at 
four quarters ahead. Interestingly, the loss differential between linear and nonlinear model forecasts 
is often found not statistically significant by the Diebold-Mariano test. Nevertheless, the analysis 
points out to the potentiality of nonlinearities in the Albanian economic indicators, suggesting that it 
can be worth trying various alternatives beyond the linear estimation models.  

The rest of the paper is organized as follows. Sections 2 describes the various methods employed 
to estimate and forecast in the face of probable structural changes. Section 3 presents some stylized 
facts and preliminary tests of the data, followed by a discussion of model selection and forecasting 
procedure. Section 4 presents the forecast evaluation results and compares the relative performance 
for each method. Section 5 carries out a number of tests that check for parameter constancy in linear 
models. Section 6 offers some concluding remarks. 
 
2. A Glimpse at the Time Series Forecasting Frameworks 
 
The literature introduces us with various methods that are commonly applied in forecasting 
economic time series. Unlike structural models that rely deeply on formal economic theory, time 
series models are bound to include only a handful of explanatory variables and have often shown 
similar or even better near-term forecast performance than the more sophisticated structural models. 
A similar accomplishment is also evidenced in the case of the simpler and less time-consuming 
univariate models that only explore the past behavior of its own data. Because of their timeliness as 
well as the ability to often generate satisfactory economic forecasts, univariate models are widely 
used as attractive benchmarks in evaluating the relative performance of various multivariate forecast 
models.  

In time series forecasting models, the variable y to be forecast at time t for h-periods ahead is 
generally a function of a vector of predictor variables Zt and a vector of unknown parameters θ, plus 
the forecast error εt+h, as formulated below: 
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yt+h = f (Zt ; θht) + εt+h        (1) 
Parameters θht could be linearly estimated or allowed to evolve over time, thereby 

distinguishing the functional form of the forecasting methods. Then, each method can use a variety 
of alternative models depending on the choice of the predictor variables and the stationarity 
transformation applied to the dependent variable. As our study focuses on univariate models, 
predictor variables Zt consist solely of current and past values of yt [Zt = (yt,…, yt-p, Δyt,…, Δyt-p, 1, t)].  

Linear univariate models have been widely used in forecasting economic and financial time 
series, following the seminal work by Box and Jenkins (1976). A key assumption in this framework is 
that variable yt has a normal distribution and it is stationary, meaning that yt has a stable mean and 
variance and its correlation with its past values is also stable over time (Ghysels & Marcellino, 2018). 
Some of the linear univariate models introduced in the literature include autoregressive (AR) models, 
moving average (MA) models, autoregressive-integrated moving average (ARIMA) models, 
regressions with forecast errors, fractionally differenced models for long-range dependence, and 
unobserved components models that are useful for extracting time series cyclical as well as seasonal 
components.  

However, if variable yt is not Gaussian and its future is not similar to the past behavior, forecasts 
can be improved by using nonlinear time series models. In that case, the model is said to have time-
varying parameters as θ coefficients can change to new values at a known date T. Some of the 
parametric nonlinear models include the bilinear models, the state-space model, the threshold 
autoregressive (TAR) models, the Markov-switching model, and the functional-coefficient 
autoregressive model. An alternative approach uses nonparametric and semiparametric methods to 
explore the nonlinearity in time series by treating the functional form f as unknown. Such methods 
include nearest neighbor, kernel regression and artificial neural networks models (Tsay, 2002, p. 127). 
 
3. Data Analysis, Model Estimation, and Forecasting Procedure 
 
This section initially presents the characteristics of our selected economic indicators in terms of their 
variability, normal distribution, and stationarity. The analysis should serve as a motivation for 
identifying the ‘appropriate’ framework and model specification, which are defined in a 
comprehensible way in the following subsection.  
 
3.1 Data characteristics 
 
Our analysis focuses on four main economic time series, namely the CPI index, real GDP, the 
lek/euro exchange rate, and the 12-month Treasury bill interest rate.1 The analysis is based on 
quarterly frequency data during the period from 1996Q1 to 2018Q4. Figures 1 through 4 graph the 
variables in levels and in quarter-on-quarter percent changes. Developments in each of the time 
series display high volatility around the domestic 1997 financial turmoil, during which there was a 
swift exchange rate depreciation, an upsurge in inflation and interest rates, as well as a pronounced 
decline in gross domestic production up to the first quarter of 1998. The next few years evidence a 
return of the variables to rather “normal” trends, which characterize most of the remaining period.  

The descriptive statistics in Table 1 suggest that time series developments have not been constant 
throughout the sample. The average quarterly changes of most variables except GDP points to positive 
and more rapidly developments in the 1990s, followed by a slower pace or even a change in direction in 
the consequent subsamples. Also, GDP experienced a higher growth rate from 2000 to 2009, but its pace 

 

1 The CPI and GDP data are taken from the Institute of Statistics, whereas the exchange rate and T-bill rate from the 
Bank of Albania website. Because national accounts are only published as annual data before 2008, real output is 
quarterly interpolated such as to match the annual figures. Lastly, all variables have been seasonally adjusted by 
using X-12 additive procedure. 
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sort of halved in the 2010s. These features cast doubt on the relevance of key assumptions made for 
linear univariate models (such as variables are Gaussian and have stable mean and variance), therefore 
justifying the estimation of alternative methods that explore nonlinearity in time series.  
 

 
 
Figure 1. Consumer Prices 
 

 
 
Figure 2. Gross Domestic Product 
 

 
 
Figure 3. The LEK/EUR Exchange Rate 



E-ISSN 2281-4612 
ISSN 2281-3993        

Academic Journal of Interdisciplinary Studies 
www.richtmann.org 

Vol 10 No 5 
September 2021 

 

 297 

 
 
Figure 4. Treasury Bill, 12-month rate 
 
Table 1. Descriptive Statistics 
 

 CPI 
q/q % chg 

GDP 
q/q % chg 

Exch. Rate 
q/q % chg 

T-Bill 
q/q chg 

 Mean 
Whole sample 1.2 1.1 0.0 -0.2 
1996q1:1999q4 3.7 1.1 0.7 0.0 
2000q1:2009q4 0.7 1.3 0.0 -0.2 
2010q1:2018q4 0.5 0.8 -0.3 -0.2 

 Standard deviation 
Whole sample 2.1 3.7 3.3 1.3 
1996q1:1999q4 4.0 7.8 7.3 2.9 
2000q1:2009q4 0.8 2.1 2.2 0.7 
2010q1:2018q4 0.4 2.0 0.9 0.4 

 Normality test#) (Jarque-Bera probability) 

Whole sample 0.00 0.00 0.00 0.00 
#) Normality tests are rejected even if tried on variables in levels. 

 
The graphical inspection in Figure 1-4 suggested that the mean of most variables in levels increases 
dramatically over time, thus giving the impression that they may be nonstationary and a unit root 
should be imposed. Nevertheless, stationarity examinations based on the Augmented Dickey-Fuller 
test and the Elliott-Rothenberg-Stock DF-GLS test often bring to dissimilar inferences (please see 
Table 2). The two tests suggest opposing orders of integration in the case of consumer prices and the 
exchange rate – inferring they are stationary, I(0), or difference-stationary, I(1). The Treasury bill rate 
is shown to be stationary according to the DF-GLS test but is determined as trend-stationary 
according to the ADF test. On the other side, gross domestic production is generally found 
difference-stationary from both tests. 
 
Table 2. Stationarity Tests 
 
 CPI index Real GDP Lek/Eur exch. rate T-Bill, 12M rate 
Sample period ADF DF-GLS ADF DF-GLS ADF DF-GLS ADF DF-GLS 
1996Q1:2012Q4 L/C D/C L/T D/C D/C L/C D/C L/C 
1996Q1:2013Q4 L/C D/C D/C D/C D/C L/C L/T L/C 
1996Q1:2014Q4 L/C D/C D/C D/C D/C L/C L/T L/C 
1996Q1:2015Q4 L/C D/C D/C D/C D/C L/C L/T L/C 
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 CPI index Real GDP Lek/Eur exch. rate T-Bill, 12M rate 
Sample period ADF DF-GLS ADF DF-GLS ADF DF-GLS ADF DF-GLS 
1996Q1:2016Q4 L/C D/C D/C D/C D/C L/C L/T L/C 
1996Q1:2017Q4 L/C D/C D/C D/C D/C L/C L/T L/C 
1996Q1:2018Q4 L/C D/C D/C L/T D/C L/C L/T L/C 
Note: i) ADF = Augmented Dickey-Fuller test; DF-GLS = Dickey-Fuller GLS (ERS) test; ii) L/C = stationary in levels, 
I(0), including a constant; L/T = I(0), trend stationary; D/C = stationary in difference I(1), including a constant; iii) 
Lag length is selected automatically on the basis of Schwarz information criterion, BIC. 
 
3.2 Selected time series forecasting models 
 
In what follows, we make a brief description of the characteristics and estimation issues of our 
selected forecasting models, along the lines of Stock and Watson (1998) and Marcellino (2004). Each 
of the three methods as discussed in Section 2 is represented in our analysis here by a single 
commonly-used model. Due to its simplicity and timeliness, the classic autoregressive (AR) model is 
chosen as an indispensable forecasting tool within the linear framework. Pertaining to the nonlinear 
family, the time-varying parameter method will be represented by the logistic smooth transition 
autoregressive (LSTAR) model, which is special form of threshold autoregressive techniques.2 Lastly, 
nonlinearity in the data is alternatively modeled by the nonparametric feed-forward artificial neural 
network (ANN), which is a computer artificial intelligence method that has gained considerable 
attention in recent decades as a promising forecast tool. The analysis uses a variety of model 
specifications, which are based on the choice of lags and some additional considerations.  
 
3.2.1 Autoregression (AR) 
 
An autoregressive model of order p takes the following linear form: 

yt+1 = α + β1yt + …+ βpyt-p+1 + εt+1 = α + β(L)yt + εt+1     (2) 
where β(L) is a lag polynomial, and α , β1 … βp are parameters that can be linearly estimated by 

the ordinary least squares method. The specification of the model differs in terms of a) the lag length, 
b) stationarity transformation, and c) the inclusion of an additional dummy variable that takes into 
account the time trend.  

In many studies, the lag length is commonly determined on the basis of Bayesian and Akaike 
information criteria. Due to a rather short estimation period (starting from 17 years of quarterly data), 
we follow a forecast-based model selection approach using 1 up to 4 alternative time lags (1 ≥ p ≤ 4 
quarters). The results are, however, further compared with the model specifications as suggested by 
the BIC and AIC criteria to shed some light whether the latter can serve as a convenient shortcut to 
model lag length selection for forecast purposes.  

Figures 1 to 4 displayed considerable persistency in the economic data, particularly in prices and 
gross domestic production. As data persistency could lead to spurious regressions, all equations are 
estimated with variables in their level, as well as the first difference form. In their empirical 
illustration, Clements and Hendry (1996) have pointed out that differencing the variables could do 
away with structural changes like level shift and also improve economic predictions, particularly 
through reductions in forecast bias. Yet another common approach to determine the specification of 
the forecasting models is based upon unit root pretests. Although Christiano and Eichenbaum (1989) 
and Rudebusch (1993) question their ability in selecting the “true” model, other authors (e.g., Stock & 
Watson, 1998; Allen & Fildes, 2005; Marcellino, 2008; Diebold & Kilian, 2000) report that pretesting 
can improve relative forecast accuracy and provide conditions under which it can happen. In view of 

 

2 There are no straightforward rules for selecting a particular nonlinear family (Teräsvirta, 2005), therefore we select 
the LSTAR model in line with other studies. 
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this, we conduct our forecast analysis based on the models in levels and differences, and later extend 
the discussion with suggestions from models as if having been pretested for the presence of unit root. 
 
3.2.2 Logistic smooth transition autoregression (LSTAR) 
 
The nonlinear method with time-varying parameters extends equation (2) as follows: 

yt+1 = α + dtβ(L)yt + (1 – dt)φ(L)yt + εt+1      (3) 
where β and φ denote parameters estimated on past data in different ‘regimes’, β(L) and φ(L), 

while dt is a delay parameter that is expressed in a nonlinear function to determine whether the 
switch between the regimes occurs in a sharp manner (the threshold autoregressive model) or in a 
smoother way (smooth transition autoregression). The smooth transition function can take various 
forms, such as logistic, exponential, or cumulative distributive function. We assume the logistic form 
as in Stock and Watson (1998), where dt = 1/(1 + exp[γ0 + γ1ζt]) and the threshold variable ζt = (1, yt, yt-1, 
… yt-p+1) if yt enters the model in levels or ζt = (1, Δyt, Δyt-1, … Δyt-p+1) if yt is differenced. Also, parameter 
γ1 denotes the smoothness, or the shape of the parameter over time: a very large value of γ1 makes the 
model look similar to a self-exciting threshold (SETAR) model with swift changes in parameters, and 
if γ1 = 0 the model becomes linear.  

As with the AR models, we estimate various LSTAR models with up to four time lags, specified 
in levels or differences, but no additional deterministic component other than a constant. To 
determine a fixed threshold variable for each model, we attempt alternative threshold variables of up 
to eight quarters as well as three different modes of choosing the starting parameter values and select 
among those that provide superior short-term forecasts.  
 
3.2.3 Artificial neural networks (ANN) 
 
The nonparametric nonlinear method is represented in our study by the feed-forward neural network 
models with up to two hidden layers. As a computer artificial intelligence method, they search for 
patterns in the data, learn them, and classify new patterns, which can be used to make predictions. 
The specification of ANNs consists of three layers, namely the input(s), hidden layer(s) and output. 
The inputs and output layers can be equivalently viewed as the regressors and the dependent 
variables, respectively. Contrary to them, the hidden layer has no parallel in econometrics, even 
though it behaves like output by allowing the information processed from the input node(s) to the 
node(s) in the hidden layer(s) and the output by certain “activation” functions. The jth node of the 
hidden layer h in a feed-forward ANN has a function as  ℎ௝ = 𝑓௝൫𝛼଴௝ + ∑ 𝑤௜௝𝑥௜௜→௝ ൯        (4) 

where α0j is called the bias, wij denotes the weight of input node xi feeding to j, and the 
activation function fj(.) is typically the logistic function, fj(z) = exp(z)/(1+exp(z)). The network learns 
by applying various weights in each iteration, until forecast errors are minimized. The activation 
function of the output layer o in an ANN with j nodes in the hidden layer is defined as  𝑜 = 𝑓௢൫𝛼଴௢ + ∑ 𝑤௝௢ℎ௝௝→௢ ൯        (5) 

Combining the activation functions (4) and (5), a feed-forward ANN model with a single hidden 
layer h1 (and a linear component) can then be written as 𝑦௧ = 𝑓௢ቂ𝛼଴௢ + ∑ 𝑤௜௢𝑥௜௜→௢ + ∑ 𝑤௝௢𝑓௝൫𝛼଴௝ + ∑ 𝑤௜௝𝑥௜௜→௝ ൯௛భ௝→௢ ቃ    (6) 

where yt is the variable of interest, and in a univariate model the inputs xi = (1, yt, yt-1, yt-p+1). The 
summation of input nodes ∑ 𝑤௜௢𝑥௜௜→௢  makes up the linear component that allows for a direct 
relationship between the input layer and the output layer, thus having the usual interpretation as in 
linear modeling. On the other hand, the summation of nodes in the hidden layer h depicts the 
nonlinear ANN component, which can be viewed as a set of time-varying intercepts that evolve 
according to their logistic functions. The higher the number of nodes in h, the better the fit of the 
model to any type of temporal evolution. By increasing the number of nodes in the hidden layer, one 
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can actually parametrize a general continuous nonlinear function (Tsay, 2002). Augmenting equation 
(6) with another hidden layer h2 with k nodes could enhance the flexibility of the neural network 
(Ghysels & Marcellino, 2018):  𝑦௧ = 𝑓௢ ቂ𝛼଴௢ + ∑ 𝑤௜௢𝑥௜௜→௢ + ∑ 𝑤௞௢𝑓௞ቀ∑ 𝑤௝௞𝑓௝൫𝛼଴௝ + ∑ 𝑤௜௝𝑥௜௜→௝ ൯௛భ௝→௞ ቁ௛మ௞→௢ ቃ   (7) 

Again, there is no theoretical basis for selecting the network, therefore the number of nodes in 
the input layer and the hidden layer(s) are often chosen through experimentation or by trial-and-
error method. In line with Stock and Watson (1998), we use a neural network with single and double 
layers. The models are differentiated then in terms of the number of input nodes, the hidden nodes, 
and the specification in levels and differences. Both variants of the neural network include up to four 
lags in the input layer, 𝑝 =  ሼ1,2,3,4ሽ. Next, the single layer network has four nodes in hidden layer, ℎଵ =  ሼ1,2,3,4ሽ; however, as the ANN models are data-intensive models and require a sufficient 
number of observations the number of nodes in the network with two hidden layers changes to ℎଵ = ሼ2,3,4ሽ and ℎଶ =  ሼ1,2ሽ.  

Forecasting with neural networks involves two steps. In the first step, a specific ANN structure 
is trained by using a fixed number of nodes and choosing their biases and weights (i.e. estimating the 
intercepts and parameters, respectively) through a minimization of some fitting criterion. We use the 
Levenberg-Marquardt optimization, which makes a recursive estimation on different starting values 
of the biases and weights until a global minimum value is achieved. We test up to 200 configurations 
of biases and weights and select the one that provides the lowest RMSE in the last 8 quarters. Once 
the ANN structures are trained and tested, they are then used to compute out-of-sample forecasts in 
order to select the best performing network. This method is similar to the cross-validation test in 
statistical analysis intended to identify problems like overfitting or selection bias. 
 
3.3 Forecasting procedure 
 
Table 3 summarizes the forecasting methods and model specifications. As described in the previous 
subsection, we compare the forecast ability among three methods, specifically the linear 
autoregressive (AR) technique, the time-varying LSTAR and the nonlinear artificial neural network 
(ANN). All models are estimated with variables in levels or transformed in first differences, 
irrespective of their stationarity condition. Further, the column on lag length specification indicates 
the number of lags, p, that are included in each alternative specification (please note that in the case 
of ANN models, p denotes the number of input nodes). Although the Bayesian and the Akaike 
information criteria would generally recommend using more than four lags3 particularly in the time-
varying models, the lag length in our analysis is restrained to range from 1 to 4 quarterly lags. The last 
column of the table displays the division or augmentation of models in terms of the deterministic and 
nonlinear components. The AR models are augmented with a time trend, while the LSTAR equations 
are regressed on 1 to 6 nonlinear thresholds each at a time. Finally, the ANN models are initially 
trained on a single hidden layer with 1 to 4 nodes; in the next exercise we include a double hidden 
layer, in which the first layer h1 starts with 2 to 4 nodes while the second layer h2 has up to 2 nodes. As 
a consequence, our forecast comparison exercise comprises a total of 144 models; of which, 16 belong 
to the linear method, 48 are time-varying, while the remaining 80 models pertain to neural networks 
(the ANNs with single and double hidden layer(s) consist of 32 and 48 models, respectively).  
 
 
 

 

3 To save space, the results about information criteria on models with up to eight lags are not shown here, but can be 
at the readers’ disposal upon request. Table 7 displays, nevertheless, a summary of the lag length selection by BIC 
and AIC on models regressed on up to four lags. 
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Table 3. Summary of Methods and Forecasting Models 
 

No. of 
models 

Stationarity 
assumptions 

No. of 
models 

Stationarity 
assumptions 

Method/ 
technique 

Lag length 
specification 

Deterministic and  
Nonlinear components 

1 

Level 

73 

Differenced 

Linear/ 
AR 

1 

Constant 
2 74 2 
3 75 3 
4 76 4 
5 77 1 

Constant and Trend 
6 78 2 
7 79 3 
8 80 4 

9-14 81-86 

Time-varying/ LSTAR 

1 

Constant and 1 to 6 thresholds 
15-20 87-92 2 
21-26 93-98 3 
27-32 99-104 4 
33-36 105-108 

Nonlinear/ ANN 

1 
Single hidden layer, 
h1={1,2,3,4} 

37-40 109-112 2 
41-44 113-116 3 
45-48 117-120 4 
49-54 121-126 1 

Double hidden layers, 
h1={2,3,4}; h2={1,2} 

55-60 127-132 2 
61-66 133-138 3 
67-72 139-144 4 

 
The forecasting experience has often demonstrated that a model with satisfactory in-sample forecasts 
does not guarantee similarly successful outcomes in the out-of-sample period. Therefore, the whole 
sample period under investigation, which ranges from 1996Q1 to 2018Q4 has been divided into the 
so-called training period up to 2012Q4 (68 quarters), and the forecast evaluation period that runs 
from 2013Q1 through 2018Q4 (24 quarters). To evaluate the forecast performance we rely on the 
smallest estimated forecast errors, as measured by the root mean squared error (RMSE). More 
precisely, the forecasting procedure starts with the model estimations over the period 1996Q1:2012Q4 
where for each of its specifications according to the form of variables and the number of lags we note 
down its forecast performance for the 1, 4 and 8 quarters ahead. The original estimation period is 
then recursively extended by a quarter (1996Q1:2013Q1), wherefrom the RMSE of forecasts for each of 
the desired horizons is computed and retained correspondingly. The evaluation process for every 
model is repeated 23, 20, and 16 times for the 1, 4 and 8 quarters forecast horizon, respectively, until 
the last quarter of 2018 is reached.  
 
4. Empirical Results and Model Comparison 
 
We now evaluate the forecast performance of the 144 models for each of the 4 economic variables as 
described above. Table 4 displays the ranking of the competing models based on the average RMSE 
over the whole set of variables.4 Clearly, the majority of best performing models belong to the 
nonlinear method. The artificial neural network models with a double hidden layer structure seem to 
provide the best results in forecasting 1 quarter ahead, while the time-varying LSTAR estimations 

 

4 The RMSE of model m is computed as the average 𝑅𝑀𝑆𝐸௡,௠௛  over the whole set of variables n for each forecast 

horizon h: 𝑅𝑀𝑆𝐸௠௛ = ଵே ∑ ோெௌா೙,೘೓ோெௌா೙,భ೓ே௡ୀଵ  All models are compared to the benchmark model AR(1) with a constant, 

specified in levels. 
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specified in differences perform better in 4 and 8 quarters ahead. On the other hand, the linear model 
(AR(3) in differences) is only ranked third when forecast horizon is equal to 8, but it does not reach 
the top five places for the short-term forecasts.  
 

Table 4. Best Performing Models for the Whole Set of Variables 
 

Rank\Horizon h=1 h=4 h=8 
 All methods 
1 ANN,D,4-3-2-1 LSTAR,D,1 LSTAR,D,2 
2 ANN,D,1-4-2-1 LSTAR,D,2 LSTAR,D,1 
3 ANN,D,3-3-1-1 LSTAR,D,4 AR,D,3 
4 ANN,D,1-2-1-1 ANN,D,1-2-1 ANN,D,1-2-1 
5 ANN,D,3-4-2-1 LSTAR,D,3 LSTAR,D,3 
 Linear method (AR) 
1 AR,D,T,1 AR,D,3 AR,D,3 
2 AR,D,1 AR,D,T,3 AR,D,2 
 Time-varying (LSTAR) 
1 LSTAR,D,1 LSTAR,D,1 LSTAR,D,2 
2 LSTAR,D,3 LSTAR,D,2 LSTAR,D,1 
 Non-linear (ANN) 
1 ANN,D,4-3-2-1 ANN,D,1-2-1 ANN,D,1-2-1 
2 ANN,D,1-4-2-1 ANN,D,1-3-1 ANN,D,3-1-1 

 

Table 5 shows the ranking of the methods based on the fraction of variables for which it is found the 
lowest RMSE. It turns out that the nonlinear method offers the best predictions in 83 percent of the 
cases, being dominated by feed-forward ANN models (67 percent). On the other side, the linear 
modeling technique is only useful for around one-sixth of the cases. The potential of nonlinear models 
is evident in all forecast horizons, particularly for 1 quarter ahead predictions (100 percent of the cases, 
totally controlled by ANNs). Computing the second and third best options brings little changes to the 
above picture, with the linear AR models performance swinging from 8 to 25 percent, respectively. 
 

Table 5. Fraction of Variables for Which a Forecast Method Has the Lowest RMSE 
 

Rank Horizon AR LSTAR ANN 
1  0.17 0.17 0.67 
 h=1 0.00 0.00 1.00 
 h=4 0.25 0.25 0.50 
 h=8 0.25 0.25 0.50 
2  0.08 0.08 0.83 
 h=1 0.00 0.00 1.00 
 h=4 0.00 0.25 0.75 
 h=8 0.25 0.00 0.75 
3  0.25 0.00 0.75 
 h=1 0.00 0.00 1.00 
 h=4 0.50 0.00 0.50 
 h=8 0.25 0.00 0.75 

 

Because nonlinear models are still expensive to maintain, particularly the ANNs, it is important to 
know whether their forecast gains are statistically different from linear methods or not. For that 
reason, we conduct the Diebold-Mariano (DM) test to formally determine if the forecasts errors from 
two methods are statistically the same or show different predictive accuracy. In the DM test, the null 
hypothesis is that the loss differential between the two forecasts has zero expectation for all t, i.e. 
both models have equal accuracy.  

Table 6 summarizes the loss differential between the best models in the linear and nonlinear 
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groups and the statistical significance based on the DM test. Initially, we present the relative RMSE in 
order to show the prediction accuracy of one model in relation to the others. Because it is measured 
as the RMSE of AR models over nonlinear techniques, a value below 1 indicates that AR forecasts have 
outperformed the LSTAR predictions; otherwise, a ratio that is above 1 indicates that AR predictions 
have on average performed worse.  

The results on the whole set of variables (part 6.A) give us the impression of a general 
underperformance of linear models, particularly in comparison to time-varying models. The RMSE 
ratio between the best AR and LSTAR forecast models varies from 1.08 to 1.13, indicating that the best 
linear autoregressive model forecasts have underperformed around 8 to 13 percent over the 
2013q1:2018 period. Nevertheless, the p-values of the Diebold-Mariano statistic suggest that the loss 
differential between the two models could only be statistically different when forecasting 8 quarters 
ahead, but they might not be very different at h=1 and h=4. Perhaps the worst linear models 
performance is against neural network models at one quarter ahead forecasts – as the RMSE ratio 
(1.37) and the DM test p-value (0.03) suggest – though they may be a useful tool in predicting four to 
eight quarters ahead.  
 
Table 6. Statistical Significance of the Loss Differential between Forecasts 
 

A. Whole set of variables 
Forecast horizon h=1 h=4 h=8 
Relative RMSE: AR over LSTAR 1.08 1.12 1.13 
Diebold-Mariano Test:    
Order 4 4 4 
DM Stat 0.64 0.07 2.35 
p-value 0.52 0.95 0.02 
Relative RMSE: AR over ANN 1.37 1.01 0.95 
Diebold-Mariano Test:    
Order 5 4 4 
DM Stat 2.18 -0.02 -0.06 
p-value 0.03 0.98 0.95  

 

B. Individual variables 
Variables CPI GDP Exch. Rate T-Bill 
F’cast horizon h=1 h=4 h=8 h=1 h=4 h=8 h=1 h=4 h=8 h=1 h=4 h=8 
RMSE ratio: AR/LSTAR 0.87 0.66 0.43 1.07 1.05 1.06 1.03 1.21 1.16 1.03 1.00 0.94 
DM test:             
Order 4 4 4 4 4 5 4 4 4 4 4 4 
DM Stat 13.93 4.38 5.79 21.09 0.19 2.57 0.67 1.17 0.94 2.01 0.13 0.21 
p-value 0.00 0.00 0.00 0.00 0.85 0.01 0.51 0.24 0.35 0.04 0.89 0.83 
RMSE ratio: AR/ANN 1.11 0.75 0.60 1.70 0.92 0.98 1.79 1.28 1.38 1.36 1.14 1.21 
DM test:             
Order 4 4 4 4 4 4 4 4 4 4 4 4 
DM Stat 1.33 4.74 8.05 1.62 3.56 0.76 1.22 1.56 0.77 0.06 1.47 1.37 
p-value 0.18 0.00 0.00 0.11 0.00 0.45 0.22 0.12 0.44 0.95 0.14 0.17 

Note: 1) the AR/LSTAR ratio uses models that are ranked best in each method; 2) The DM test is based on the 
squared-errors method; when this is not possible to compute, the absolute-error method is used instead. 

 
The lower part of the table (6.B) presents the forecast gains in individual variables between models 
that are ranked best in each method. It turns out that the AR model has outperformed both the 
LSTAR and ANN models in forecasting CPI prices. With the exception of relative RMSE calculated for 
AR/ANN at h=1, the other forecast error ratios range considerably below 1 at between 0.87 and 0.43. 
The statistical significance derived from the DM test strongly approves the superiority of the linear 
AR model in predicting consumer prices (p-values are closer to zero for all forecast horizons). It is 



E-ISSN 2281-4612 
ISSN 2281-3993        

Academic Journal of Interdisciplinary Studies 
www.richtmann.org 

Vol 10 No 5 
September 2021 

 

 304 

found the linear method could also be effective in predicting gross domestic production at four 
quarters ahead. Nevertheless, its forecast ability appears to have generally underperformed with 
regard to the other variables. The relative RMSE values are higher than one in most cases, especially 
the exchange rate ratios. However, the poor performance of linear models is found statistically 
significant only when forecasting GDP at h=1 and h=8, as well as the interest rate at 1 quarter ahead. 
Perhaps surprisingly, their seemingly bad performance in the exchange rate case (with the RMSE 
often higher than 20 percent) is not shown statistically relevant by the DM test. 

Last but not least, we now turn to the discussion about the relevance of using unit root tests or 
certain information criteria in model specification for forecasting purposes. Results from Table 4 gave 
us the impression that specifying the models in differences and using a couple of own lags might help 
in attaining lower RMSEs within each forecast method. Yet, the ADF and DF-GLS tests on stationarity 
(in Table 2) were only clear about using differences in the case of real GDP. They provided opposing 
recommendations for prices and the exchange rate, while both concluded that the interest rate is 
stationary in levels. Moreover, the Bayesian and Akaike information criteria on lag length selection 
were mostly in favor of a plenteous number of lags, rather than a couple of them as might be inferred 
from Table 4.  

Table 7 combines model selections as recommended by stationarity tests and information criteria 
for modeling each variable. In general, they do not match with our findings on the top two best models 
within each group, i.e., the linear, time-varying and artificial neural network5 method. For example, the 
best AR models ranked first and second for predicting consumer prices correspond to model 
specification in levels, which are regressed on a couple of own lags and a time trend component. 
However, the unit root tests suggested that CPI is stationary in level (ADF) or in first difference (DF-
GLS) without a deterministic trend, and both information criteria (BIC/AIC) determined to choose an 
optimal number of at least three lags. This discrepancy is evidenced throughout the linear AR models, 
with very few exceptions such as the model selection for GDP, whose order of integration and the 
number of lags match all with the best AR model performers. Furthermore, the picture with the time-
varying LSTAR models is similarly unclear. Although the DF-GLS (ADF) stationarity test suggest the 
right variable transformation in three (two) cases, they fail to be accurate in all of them. Also, employing 
the BIC (AIC) information criterion for the optimal lag length selection turns out to be appropriate for 
only two (one) out of four variables. The inability to find an appropriate measure for model selection in 
our univariate analysis is consistent with Vika’s (2018) concluding remarks in a vector autoregression 
analysis. The problem might be related to the insufficiently large number of observations at disposal for 
economic time series in Albania. Yet, numerous simulations in the book by McQuarrie and Tsai (1998) 
suggest that there might not be any generally “best” criterion.  
 

Table 7. Comparing Model Selection by Information Criteria and Stationarity Tests 
 

  CPI GDP Exch. Rate T-Bill 
Models Assumption Stationary BIC/AIC Stationary BIC/AIC Stationary BIC/AIC Stationary BIC/AIC 
AR Level ADF 3  3/4 DF-GLS 4 DF-GLS 2 
AR Level, with trend  4  1/4  4 ADF 2 

AR Differenced DF-GLS 4 ADF/ 
DF-GLS 2/3 ADF 3/4  1/4 

AR Differenced, with trend  4  2/3  3/4  1/4 
LSTAR Level ADF 3  3/4 DF-GLS 4 DF-GLS 2/3 

LSTAR Differenced DF-GLS 1/4 ADF/ 
DF-GLS 3 ADF 4  4 

 

5 The discussion on ANN models is limited to the unit root test. It could be interesting to assess which neural 
network structure(s) would the BIC or AIC recommend, but our information criteria analysis has focused here only 
on the popular econometric/parametric AR and LSTAR models. 
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5. Instability Tests and Some Additional Robustness Check 
 
The forecast evaluation revealed that nonlinear models could be better suited to forecast the main 
economic indicators in Albania. As the underperformance of linear specifications might result from 
potential instabilities in the data during the twenty-three years of investigation, testing for parameter 
stability can provide important information about model adequacy and out-of-sample forecasting 
accuracy (Stock, 1994). In this section, we attempt to shed light on the parameter constancy in our 
best forecasting linear models. In line with Stock and Watson (1996), we apply a number of stability 
tests that check whether the variation in coefficients remains in control and there are unknown 
structural breaks in the sample period.  

The Breusch-Pagan-Godfrey (BPG) test examines on the assumption of homoscedasticity in 
linear regressions, against the alternative of heteroscedastic, or “differently scattered” errors. Other 
popular tests make use of the recursive residuals in order to inspect for possible structural changes 
over time. We focus on the techniques that are considered appropriate for time series data and do 
not require a prior knowledge about when a structural break might have occurred. Two widely used 
applications, in this respect, are the cumulative sum (CUSUM) and cumulative sum of squares 
(CUSUMSQ) statistics of Brown, Durbin and Evans (1975), which basically test if the cumulative sum 
(of squares) of recursive residuals moves outside of its confidence interval. Additional to these two 
recursive least squares methods we employ certain stability diagnostics that test for one or more 
regime changes in our estimation sample. Although there may be obvious periods at which economic 
series give indications of structural changes, we assume no knowledge about break dates on 
individual series and thus consider the Quandt-Andrews unknown breakpoint tests, namely the 
Maximum statistic (MLR), the Exponential statistic (ELR) and the Average statistic (ALR) (see 
Quandt, 1960; Andrews, 1993; and Andrews & Ploberger, 1994), as well as a multiple breakpoint test 
based on the global information criteria method. As structural breaks can be hard to identify near the 
beginning and the end of a sample, Andrews recommends a 15 percent “trimming” of the data if there 
is no reason to assume break date(s). We, nevertheless, leave out the first and last 10 percent of the 
observations, so as to allow the testing procedure to include at least some of the adverse effects in the 
variables around the 1997 economic turmoil. 

Table 8 presents the results on parameter stability in the best performing linear AR models. We 
discuss them variable by variable and make inference with respect to their relative performance as 
reported in Table 6, part B. The stability tests for the CPI and T-bill rate linear models suggest that 
the estimated parameters are in general not constant and could suffer from heteroscedasticity and 
structural breaks. The most likely breakpoint location for both variables is around the middle of 1998, 
as suggested by the Quandt-Andrews maximum statistic and the Schwarz criterion in the multiple 
breakpoint test, too. Despite the strong instability in coefficients and the suggested breakpoints, the 
best AR linear model has still outperformed nonlinear models in the case of consumer prices, while 
showing similar ability to forecast the T-bill 12-month interest rate.  

Next, the stability tests reveal somewhat incongruous results for GDP and the LEK/EUR 
exchange rate. The assumption of homoscedasticity in the regression is rejected by the BPG test, and 
the CUSUMSQ test suggests a deviation of parameters outside the 95% confidence interval. On the 
contrary, the remaining six stability diagnostics find no structural breaks in parameters. Interestingly, 
though the stability tests might show favor of using linear models for these two economic series, their 
forecast ability is found to be poorer than that of the best time-varying-parameter models. 
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Table 8. Stability Tests for Best Performing AR modelsa) 

 
 CPI GDP Exch. Rate T-Bill, 12m 
Heteroscedasticity test: 
BPG, F prob. 0.00 0.09 0.00 0.00 
Cumulative sum (of squares) tests. Period of moving outside 5% confidence interval: 

CUSUM test Yes: 
1999q1 2000q2 NO NO Yes: 

1998Q2 2018Q4 

CUSUMSQ test Yes: 
1998q3 2014q3 

Yes: 
1998q4 2002q1 

Yes: 
1997q2 2014q3 

Yes: 
1998q1 2014q3 

Quandt-Andrews unknown breakpoint test. Null hypothesis: No breakpoints within 10% trimmed data: 
Max LR F, prob.b) 0.00 0.35 0.10 0.00 
Break location 1998Q3 1999Q1 1999Q2 1998Q3 
Exp LR F, prob.b) 0.00 0.69 0.33 0.00 
Ave LR F, prob.b) 0.03 0.66 0.40 0.20 
Multiple breakpoint test: Selected breaks based on global information criteria method (trimming 10%): 
Schwarz crit. 1 0 0 2 
LWZ crit. 1 0 0 1 
Est. break dates 1998Q2 - - 1998Q2; 2012Q4 
a) Best linear models are represented by the AR(1) type specified in levels for the T-bill rate; in differences for GDP; 
in levels and including a trend for the CPI; and in difference and including a trend for the lek exchange rate. 
b) Probabilities calculated using Hansen method in the EViews software. 

 
Because stability tests were not distinctly defined and some of them evidence parameter instabilities 
or structural breakpoints following the collapse of pyramid schemes in 1997, we attempt an additional 
robust analysis to safeguard the forecast ability of linear models. Initially, the AR models are re-
estimated by using a shorter sample period that leaves out the 1990s. We tried different starting 
periods from the beginning of every year from 2000 to 2003 and checked in vain whether the new 
forecasts could improve their performance in Table 5. The exercise produced better forecasts with 
respect to the whole estimation period (starting from 1996), especially for consumer prices and the 
short-term interest rate; yet, in neither of the re-estimated periods were they able to increase the 
fraction of variables for which a lower RMSE is computed.  

Another way to improve the forecast performance of AR models in the presence of structural 
breaks is to enter the variables in second differences, as it is proposed by Clements and Hendry 
(1999). This method is expected to take into account much of the economic and institutional changes 
that have taken place during the transition period or in the aftermath of the global financial crisis. 
The results only proved important for the exchange rate forecast performance at all horizons and for 
GDP at h=4. This helped the AR models to double the fraction of variables with the lowest RMSE in 
the first rank to 33 percent (though figures in the second rank did not change whereas in the third 
rank deteriorated), while reducing both the LSTAR and ANN model performance by 10 percentage 
points to 8 and 58 percent, respectively.6 

To summarize, stability tests do not support linear modeling in two out of four variables in our 
analysis. Yet, heteroscedasticity and structural changes do not seem to affect their forecast 
performance against the nonlinear methods, as in the case of consumer prices. Alternative 
autoregressive specifications, such as treating variables as integrated of order I(2), may yield fruitful 
results even in spite of good-performing nonlinear models. 
 
 

 

6 The results about the robustness analysis are not shown in the material, but can be provided by the authors upon 
request. 
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6. Concluding Remarks 
 
Nonlinear forecasts have performed better than linear forecasts for most variables at almost all 
forecast horizons. Analyzing the whole set of variables, the feed-forward ANN models performed 
especially well in predicting 1 quarter ahead, while the time-varying parameter LSTAR models 
showed better results at longer horizons of 4 and 8 quarters.  

Although it is tempting to use classic autoregressive models due to their relatively low costs, the 
linear framework has shown limited forecast ability in the context of Albanian economic indicators. 
We find that AR models outperformed both the LSTAR and ANN models only in forecasting CPI 
prices, and could also be useful in predicting GDP at four quarters ahead. Perhaps the successful 
performance of AR models with respect to the CPI index may be related to the relatively low volatility 
of prices around their trend, especially during the forecast evaluation period from 2013 to 2018.  

The stability tests for the linear models suggest that parameters generally suffer from 
heteroscedasticity and likely structural changes, especially in the case of consumer prices and the T-
bill interest rate. Potential instabilities in the data during the twenty-three years of investigation may 
often show favor of using nonlinear models, yet they do not seem to affect the relative AR model 
forecast performance. Neither the omission of the rather volatile period in the 1990s, nor the 
alternative estimation with variables in second differencing are able to change the worse forecast 
performance of linear autoregressive models. 

On the whole, our findings should instigate macroeconomic modelers to enhance their suite of 
models with alternatives beyond the linear estimation framework, with due considerations in the 
direction of artificial neural networks. In this context, an interesting future research would certainly 
be to optimize on time efficiency. As trying just a few starting values of biases and weights was not 
very promising, an increase to 200 trials produced substantial improvements in finding the best 
forecast configuration. Yet, training and selecting the best network out of 80 structures specified in 
level and in difference necessitated about two days for forecasting each variable using Matlab 
program in a common desktop PC. That is an enormous time to deal with if forecasters need to 
prepare projections on a number of economic variables within, let say a couple of weeks. Therefore, 
improving the neural network tools to optimize efficiency in forecasting is important. 
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